تحلیل انرژی و اگزرژی سیستم نوین ریفرمینگ بخارآب بیوگاز خورشیدی برای تولید هیدروژن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد، گروه مهندسی مکانیک، دانشگاه تبریز، تبریز، ایران

2 استادیار، گروه مهندسی مکانیک، دانشگاه محقق اردبیلی، اردبیل، ایران

3 دانشجوی دکتری، گروه مهندسی مکانیک، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

در این مقاله، یک سیستم جدید ریفرمینگ بخارآب بیوگاز جهت تولید هیدروژن ارائه شده است. مخلوط بیوگاز شامل درصد زیادی متان و دی اکسیدکربن و مقادیر ناچیز گازهای دیگر می­باشد. مدلسازی جامع ترمودینامیکی (انرژی و اگزرژی) بر روی سیستم پیشنهادی صورت گرفته است. تأثیر پارامترهای مختلف سیستم از قبیل دما و نسبت مولی دی­اکسیدکربن به متان در مخلوط بیوگاز بر روی میزان تولید هیدروژن، بازده انرژی و اگزرژی کل سیستم انجام شده است. نتایج نشان دادند که با افرایش دمای واکنش ریفرمینگ بخارآب انجام شده در راکتور در یک نسبت مولی ثابت دی­اکسیدکربن به متان در مخلوط بیوگاز، میزان تولید هیدروژن و بازده انرژی و اگزرژی سیستم افزایش می­یابد. علاوه بر این با افزایش نسبت مولی دی­اکسیدکربن به متان در مخلوط بیوگاز در دماهای بالا باعث کاهش تولید هیدروژن به ازای هر مول متان شده و در نتیجه بازده انرژی و اگزرژی کل سیستم کاهش یافته است. همچنین بیشترین بازده انرژی و اگزرژی کل سیستم در شرایطی که میزان تولید هیدروژن بیشینه است، به ترتیب برابر %52 و % 42 حاصل شده است.

کلیدواژه‌ها

موضوعات


[1]      Balat M., Potential importance of hydrogen as a future solution to environmental and transportation problems, Int. J. Hydrogen Energy, vol. 33, pp. 4013–4029, 2008.
[2]      Winter C. J., Hydrogen energy - Abundant, efficient, clean: A debate over the energy-system-of-change, Int. J. Hydrogen Energy, vol. 34, pp. 1–52, 2009.
[3]      Dincer I., Hydrogen and Fuel Cell Systems, Advanced Power Generation Systems, pp. 143-198, 2014.
[4]      Kang J.S., Kim D.H, Lee S.D., Hong S.I., Moon D.J., Nickel-based tri-reforming catalyst for the production of synthesis gas, Appl. Catal., vol. 332, pp.153–158, 2007.
[5]      Braga L.B., Silveira J.L., Evaristo S.M., Tuna C., Machin E.B., Pedroso D.T., Hydrogen production by biogas steam reforming: a technical, economic and ecological analysis, Ren Sust Energy Rev, vol. 28, pp. 6166-6173, 2013.
[6]      Kolbitsch P., Pfeifer C., Hofbauer H., "Catalytic steam reforming of model biogas", Fuel, vol. 87, pp. 701-706, 2008.
[7]      Edelmann W., Biogas production and usage Energy from biomass: basic principles, technologies and processes, Springer, Germany, 2001.
[8]      Alves H.J., Bley C.J., Niklevicz  R.R., Frigo E.P., Frigo M.S., CoimbraArau C.H., Overview of hydrogen production technologies from biogas and the applications in fuel cells, Int. J. Hydrogen Energy, vol. 38, pp. 521-525, 2013.
[9]      Udengaard N.R., Hydrogen production by steam reforming of hydrocarbons, Am Chem Soc Div Fuel Chem, vol. 49, pp. 1-6, 2004.
[10]    Gutie rrez Ortiz F.J., Ollero P., Serrera A., and  Galera S., "An energy and exergy analysis of the supercritical water reforming of glycerol for power production", Int. J. Hydrogen Energy, vol. 37, pp. 209-226, 2012.
[11]    Bejan A., Tsatsaronis G., Moran M., Thermal design and optimization, John Wiley &Ny, Inc., New York, 1996.
[12]    Chang Alex C.C., and Lee K.Y., Biogas reforming by the honeycomb reactor for hydrogen production , Int. J. Hydrogen Energy, vol. 41, pp. 1-8, 2015.
[13]     Cipiti F., Barbera O., Briguglio N., Giacoppo G., Italiano C., and Vita A., Design of a biogas steam reforming reactor: A modeling and experimental approach, Int. J. Hydrogen Energy, vol. 41, pp. 1-7, 2016.
[14]     Hajjaji N., Martinez S., Trably E., Steyer J.P., and  Helias A., Life cycle assessment of hydrogen production from biogas reforming, Int. J. Hydrogen Energy, vol. 41, pp. 6064-6075, 2016.
[15]     Ahmed Sh., Lee Sh. H.D., and Ferrandon M. S., Catalytic steam reforming of biogas: Effects of feed composition and operating conditions, Int. J. Hydrogen Energy, vol. 40, pp. 1-11, 2014.
[16]     Zhu X., Li K., Liu J.L., Li X.S., and Zhu A.M., Effect of CO2/CH4 ratio on biogas reforming with added O2 through an unique spark-shade plasma, Int. J. Hydrogen Energy, vol. 39, pp. 1-7, 2014.
[17]     Izquierdaro U., Barrio V.L., Lago N., Requies  J., Cambra J.F., Guemez M.B., and Arias P.L., Biogas steam and oxidative reforming processes for synthesis gas and hydrogen production in conventional and micro reactor reaction systems, Int. J. Hydrogen Energy, vol. 37, pp.13829-13842, 2012.
[18]     Roy P. S., Raju A. S.K., and  Kim K., Influence of S/C ratio and temperature on steam reforming of model biogas over a metal-foam-coated Pd–Rh/(CeZrO2–Al2O3) catalyst, Fuel, vol. 139, pp. 314-320, 2015.
[19]     Cohce M.K., Dincer I., and Rosen M.A., Energy and exergy analyses of a biomass-based hydrogen production system, Bioresource Technology, vol. 102, pp. 8466-8474, 2011.
[20]    Khoahtinat Nikoo M., and Amina N.A.S., Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation, Fuel Processing Technology, vol. 92, pp. 678-691, 2011.
[21]    Aydınoglu S., Thermodynamic equilibrium analysis of combined carbon dioxide reforming with steam reforming of methane to synthesis gas, Int. J. Hydrogen Energy, vol. 35, pp. 12821-12828, 2010.
[22]     Cheina R.Y., Chenb Y.C., Yuc C.T., and Chungd J.N., Thermodynamic analysis of dry reforming of CH4 with CO2 at high pressures, Journal of Natural Gas Science and Engineering, vol. 26, pp. 617-629, 2015.
[23]     Simpson A. P., and Lutz A. E., Exergy analysis of hydrogen production via steam methane reforming, Int. J. Hydrogen Energy, vol. 32, pp. 4811-4820, 2007.
[24]     Mehr A.S., Mahmoudi S.M.S., Yari M., and Chitsaz A., Thermodynamic and exergoeconomic analysis of biogas fed solid oxide fuel cell power plants emphasizing on anode and cathode recycling: A comparative study, Energy Conversion and Management, vol. 105, pp. 596-606, 2015.
[25]    Hiblot H., Ziegler-Devin I., Fournet R., Glaude P.A., Steam reforming of methane in a synthesis gas from biomass gasification, Int. J. Hydrogen Energy, vol. 41, pp. 18329-18338, 2016.
[26]    Grobmann K., Treiber P., Karl J., Steam methane reforming at low S/C ratios for power-to-gas applications, Int. J. Hydrogen Energy, vol. 41, pp. 1-9, 2016.
[27]    Jang W.J., Jeong D.W., Shim J.O.  , Kim H. M., Roh H.S., Son I. H., Lee S. J., Combined steam and carbon dioxide reforming of methane and side reactions: Thermodynamic equilibrium analysis and experimental application, Int. J. Applied Energy, vol. 173, pp. 81-90, 2016.
[28]    Anzelmo B., Wilcox J., Liguori S., Natural gas steam reforming reaction at low temperature and pressure conditions for hydrogen production via Pd/PSS membrane reactor, Int. J. Membrance Science, vol. 522, pp. 343-350, 2017.
[29]    Tsai T.I., Trosk ialina L., Majewski A., Steinberger-Wilckens R.,Methane internal reforming in solid oxide fuel cells with anode off-gas recirculation, Int. J. Hydrogen Energy, vol. 41, pp. 553-561, 2016.
[30]    Rathod V. P., Shete J., and Bhal P.V., Experimental  investigation on biogas reforming to hydrogen rich syngas production using solar energy, Int. J. Hydrogen Energy, vol. 41, pp. 132-138, 2016.
[31]     Galvagno A., Chiodo V., Urbani F., and Freni F., Biogas as hydrogen source for fuel cell
applications, Int. J. Hydrogen Energy, vol. 38, pp.3913-3920, 2013.
[32]     Jakobsen J.G., Jorgensen T.L., Chorkendorff I., and Sehested J., Steam and CO2 reforming of methane over a Ru/ZrO2 catalyst, Appl Catal A Gen, vol. 377, pp.158-166, 2010.
[33]     Guczi L., and Erdohelyi A., Catalysis for alternative energy generation, Springer, New York, 2012.
[34]     Rahimpour M.R., Dehnavi M.R., Allahgholipour F., Iranshahi D., and Jokar S.M, Assessment and comparison of different catalytic coupling exothermic and endothermic reactions: a review, Appl Energy, vol.99, pp.496-512, 2012.
[35]     Gangadharan P., Kanchi K.C, and Lou H.H., Evaluation of the economic and environmental impact of combining dry reforming with steam reforming of methane, Chem Eng Res Dev, vol.90, pp. 1956-1968, 2012.
[36]     Sun S., Yan W., Sun P., and Chen J., Thermodynamic analysis of ethanol reforming for hydrogen production, Energy, vol. 44, pp. 911-924, 2012.
[37]     Klein S., and Nellis G., Thermodynamics, Cambridge University press, New York, 2012.
[38]     Wang W., and Cao Y., Hydrogen production via sorption enhanced steam reforming of butanol: Thermodynamic analysis, Int. J. Hydrogen Energy, vol. 36, pp. 2887-2895, 2011.
[39]    Rabbani M., and Dincer I., Energetic and exergetic assessments of glycerol steam reforming in a combined power plant for hydrogen production, Int. J. Hydrogen Energy, vol. 40, pp. 1-8, 2015.
[40]    Szargut J., Morris D.R., and Steward F.R., Exergy analysis of thermal, chemical and metallurgical processes, Hemisphere, New York, 1988.
[41]     R. Wegeng, Diver R., and Humble P. Second law analysis of a solar methane reforming system, Energy Procedia, vol. 49, pp. 1248-1258, 2014.