ارزیابی تأثیر آلومینیوم بر تغیرات ریزساختاری، خواص مکانیکی و عمر خستگی فولاد هایپریوتکتوئید هادفیلد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مربی، باشگاه پژوهشگران جوان و نخبگان، دانشگاه آزاد اسلامی واحد دزفول، دزفول، ایران

2 استادیار، گروه مواد و متالورژی، دانشگاه آزاد اسلامی واحد اهواز، اهواز، ایران

چکیده

در این پژوهش به بررسی تأثیر عنصر آلیاژی آلومینیوم بر تغیرات ریزساختاری، خواص مکانیکی و عمر خستگی فولاد هادفیلد پرداخته شده است. برای این منظور، ابتدا دو بلوک از فولاد هادفیلد (بدون آلومینیوم و حاوی 68/1 درصد وزنی آلومینیوم) بوسیله‌ی کوره القایی تهیه شد. پس از ریخته‌گری، هر دو بلوک تحت عملیات حرارتی آستنیته‌کردن در دمای °C1100 به مدت 2 ساعت قرار گرفته و بلافاصله در آب خالص سریع سرد شدند. در مرحله‌ی بعد، آزمون‌های کشش تک‌محوره، خستگی‌خمشی و سختی‌سنجی به روش ویکرز بر روی نمونه‌ها انجام شد. برای بررسی ریزساختار از متالوگرافی و برای بررسی سطوح شکست از میکروسکوپ الکترونی روبشی استفاده گردید. در نتیجه معلوم شد که نمونه‌ی حاوی 68/1 درصد وزنی آلومینیوم سختی و استحکام تسلیم بیشتر، و در عوض استحکام کششی، انعطاف‌پذیری و عمر خستگی کمتری نسبت به نمونه‌ی بدون آلومینیوم دارد. همچنین تصاویر میکروسکوپ الکترونی روبشی دلالت بر وقوع شکست نرم در آزمایش کشش برای هر دو نمونه و افزایش رشد ترک خستگی در آزمایش خستگی در اثر افزودن آلومینیوم به ترکیب فولاد هادفیلد داشت.

کلیدواژه‌ها

موضوعات


[1] Ibitoye S.A., Olawale J.O. and Shittu M.D., Mechanical properties of quench-hardened, martempered and tempered ASTM A 128 grade b-4 steel, J. Sci. Technol, Vol. 29, No. 2, pp. 107-117, 2009.
 [2] Limooei M.B. and Hosseini SH., Optimization of properties and structure  with addition of titanium in hadfield steels, Proc. Conf. of Metal 2012, Brono, Czech Republic, pp. 1-6, 2012.
[3] Najafabadi V.N., Amini K. and Alamdarlo M.B., Investigating the effect of titanium addition on the wear resistance of Hadfield steel,  Metallurgical Research Technologe, Vol. 111, No. 6, pp. 375-382, 2014.
[4] Magdaluyo E.R. and et al., Gouging Abrasion Resistance of Austenitic Manganese Steel with Varying Titanium, Proc. of the World Congress on Engineering 2015, London, English, pp. 1-4, 2015. 
]5[ نجف آبادی و.، مناجاتی زاده ح. و امینی ک.، بررسی تأثیر تیتانیم بر بهبود خواص فولاد هادفیلد STM A128-C"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، سال 7، شماره اول، ص 54 – 45، بهار 1392.
[6] Srivastava A.K. and Das K.., In-situ Synthesis and Characterization of TiC-Reinforced Hadfield Manganese Austenitic Steel Matrix Composite, Iron and Steel Institute of Japan International, Vol.49, No.9, pp.1372-1377,  2009.
[7] Srivastava  A.K.  and et al., Corrosion Behaviour of TiC-Reinforced Hadfield Manganese Austenitic Steel Matrix In-Situ Composites, Open Journal of Metal, Vol. 5, pp. 11-17, 2015.
]8[ خیاط م.، خیراندیش ش. و عباسی م.،تاثیر آلومینیم بر ریزساختار فولاد آستنیتی منگنزی هادفیلد در شرایط مختلف عملیات حرارتی، مجموعه مقالات دومین همایش بین المللی و هفتمین همایش مشترک انجمن مهندسی متالورژی ایران و انجمن ریخته‌گری ایران، سمنان، 1392.  
[9] Tian X. and Zhang Y., Mechanism on the Effect of Al upon the γ→ε Martensite Transformation in the Fe-Mn Alloys, Journal of Material Science and Technology, Vol. 12, No. 22, pp. 369-372, 1996.
]10[ سبزی م. و معینی‌فر ص.، بررسی تاثیر عناصر آلیاژی آلومینیوم و کروم بر رفتار الکتروشیمیایی فولاد آستنیتی منگنزدار هادفیلد، مجله علوم و مهندسی خوردگی، شماره 5، دوره 5، ص 28 – 19، بهار 1394.  
[11] Abbasi M., Kheirandish SH., Kharrazi Y., Hejazi J., On the comparison of the abrasive wear behavior of aluminum alloyed and standard Hadfield steels, Wear,  Vol. 268, No. 1-2, pp. 202-207, 2010.
]12[ عباسی م.، خیراندیش ش.، خرازی ی. و حجازی ج.، بررسی تاثیر برخی عوامل اصلی بر رفتارسایشی فولاد هادفیلد، نشریهعلوم و مهندسی سطح، سال 5، شماره 7 ،  ص 80 - 69، تابستان 1388.
[13] Schilke M., Ahlstrom J., Karlsson B., Low cycle fatigue and deformation behaviour of austenitic manganese steel in rolled and in as-cast conditions, Procedia Engineering, Vol. 2, No.1, pp. 623-628, 2010.
[14] Hamada A.S., Karjalainen L.P., Puustinen J., Fatigue behavior of high-Mn TWIP steels, Materials Science and Engineering: A, Vol. 517, No. 1-2, pp. 68-77, 2009.
[15] Feng X.Y., Zhang F., Zheng ch., Lu B., Micromechanics behavior of fatigue cracks in Hadfield steel railway crossing, Science China Technological Sciences, Vol. 56, No. 5, pp. 1151-1154, 2013.
[16] Annual book of ASTM standards, ASTM 128 A / 128 M, Standard specification for steel castings, austenitic manganese, ASTM  International, Vol. 1, 1980.
 [17] Annual book of ASTM standards, Standard Test Method for Vickers Hardness of Metallic Materials,  ASTM E92-82,pp. 1-9, 2003.
[18] Annual book of ASTM standards, ASTM E8 / E8M-15a, Standard Test Methods for Tension Testing of Metallic Materials, ASTM Int., Vol. 03.01, 2015.
[19] German Standards Organization, Rotating Bar Bending Fatigue Test, DIN 50113, 1982.
[20] Lee Y.K., Choi C.S., Driving Force for γ→ε Martensitic Transformation and Stacking Fault Energy of γ in Fe-Mn Binary System, Metallurgical and Material Transaction A, Vol. 31, No. 2, pp. 355-360, 2000.
[21] Zuidema B.K., Subramanyam D.K., Leslie W.C., The effect of Aluminium on the work hardening and wear resistance of Hadfield manganese steel, Metallurgical Transactions A, Vol. 18A, No. 9, pp. 1629-1639, 1987.
]22[ دیتر جورج ای.، متالورژی مکانیکی، شهیدی ش. (مترجم)، مرکز نشر دانشگاهی، چاپ پنجم، 1392.
[23] China K.G., Kang C.Y., Shin S.Y., Hong S., Lee S., Kim H.S., Kim K.H., Kim N.J., Effects of Al addition on deformation and fracture mechanisms in two high manganese TWIP steels, Materials Science and Engineering: A,Vol. 528, No. 6, pp. 2922-2928, 2011.
[24] Parka K.,  Jin K.G., Han S.H., Hwang S.W., Choi K., Lee C.S., Stacking fault energy and plastic deformation of fully austenitic high manganese steels: Effect of Al addition, Materials Science and Engineering: A, Vol. 527, No. 16-17, pp. 3651-3661, 2010.
[25] Abbasi M., Kheirandish S.H., Kharrazi Y., Hejazi J., The fracture and plastic deformation of aluminum alloyed Hadfield steels, Materials Science and Engineering: A, Vol. 513-514, No. 2-3, pp. 72-76, 2009.
[26] Sharifi H., Salehi M., Saeri M.R., The Effect of Ferrite Grain Size on the Fatigue Behavior of Ferrite-martensite Dual-phase Steels,  International Journal of ISSI, Vol. 11, No. 2, pp.11-16, 2014.
[27] Kang j., Zhang F.C., Longa X.Y., Lv B., Cyclic deformation and fatigue behaviors of Hadfield manganese steel, Materials Science and Engineering: A, Vol. 591, No. 11, pp. 59-68, 2014.
]28[  هرتزبرگ ر.د.، تغییر شکل و مکانیک شکست مواد و آلیاژهای مهندسی، اکرامی ع.ا. (مترجم)، دانشگاه صنعتی شریف، موسسه انتشارات علمی، 1382.
]29[ عباسی م. و همکارانش، ارزیابی مکانیزم شکست در فولاد هادفیلد، مجموعه مقالات ششمین همایش مشترک انجمن مهندسین متالورژی و انجمن علمی ریخه گری ایران، تهران، ایران، ص 9- 1، 1391.
[30] Newman J.C., Finite element analysis of crack growth under monoyonic and cyclic loading, ASTM  STP 637, pp. 56-80, 1977.
 
[31] Newman J.C., Finite-element analysis of fatigue crack propagation-including the effects of crack closure, PH. D. thesis, VPI and State Uneversity, Blacksburg, 1974.
 
[32] Antunes F.W., Chegini A.G., Camas D., Correia L., Empirical model for plasticity-induced crack closure based on Kmax and ΔK, Fatigue & Fracture of Engineering Materials & Structures, Vol. 38, No. 8, pp. 983-996, 2015.
[33] Walkera K.F., Wangb C.H., Newman J.C., Closure measurement and analysis for small cracks from natural discontinuities in an aluminium alloy, International Journal of Fatigue, Vol. 82, No.2, pp. 1-12, 2015.
[34] Alderliesten R.C., How proper similitude can improve our understanding of crack closure and plasticity in fatigue, International Journal of Fatigue, Vol. 82, No. 2, pp. 1-11, 2015.
[35] Katcher M., Kapalan M., Effect of R-factor and crack closure on fatigue crack growth for Al and Ti alloys, ASTM ETP, Vol. 559, p. 264, 1974.