[1] Su N., Mackie R.I., Two-dimensional creep analysis of structural adhesive joints, International Journal of Adhesion and Adhesives, 13,(1), pp. 33-40, 1993.
[2] Dean G.D., Broughton W., A review of creep modelling for toughened adhesives and thermoplastics, National Physical Laboratory, 2005.
[3] Brinson H.F., Brinson L.C., Polymer engineering science and viscoelasticity: an introduction, Springer Science & Business Media, 2007.
[4] Lubliner J., Plasticity theory, Courier Corporation, 2008.
[5] Dean G., Modelling non-linear creep behaviour of an epoxy adhesive, International Journal of Adhesion and Adhesives, 27,(8), pp. 636-46, 2007.
[6] Feng C.-W., Keong C.-W., Hsueh Y.-P., Wang Y.-Y., Sue H.-J., Modeling of long-term creep behavior of structural epoxy adhesives, International journal of adhesion and adhesives, 25,(5), pp. 427-36, 2005.
[7] Yu X., Crocombe A., Richardson G., Material modelling for rate-dependent adhesives, International journal of adhesion and adhesives, 21,(3), pp. 197-210, 2001.
[8] Yu H., Li Z., Wang Q.J., Viscoelastic-adhesive contact modeling: Application to the characterization of the viscoelastic behavior of materials, Mechanics of Materials, 60, pp. 55-65, 2013.
[9] Majda P., Skrodzewicz J., A modified creep model of epoxy adhesive at ambient temperature, International Journal of Adhesion and Adhesives, 29,(4), pp. 396-404, 2009.
[10] Chiu W.K., Jones R., Unified constitutive model for thermoset adhesive, FM73, International Journal of Adhesion and Adhesives, 15,(3), pp. 131-6, 1995.
[11] Duncan B., Maxwell A., Measurement methods for time-dependent properties of flexible adhesives, NPL, 1999.
[12] Mortensen F., Thomsen O.T., Analysis of adhesive bonded joints: a unified approach, Composites Science and Technology, 62,(7), pp. 1011-31, 2002.
[13] Pandey P., Shankaragouda H., Singh A.K., Nonlinear analysis of adhesively bonded lap joints considering viscoplasticity in adhesives, Computers & structures, 70,(4), pp. 387-413, 1999.
[14] Ferrier E., Michel L., Jurkiewiez B., Hamelin P., Creep behavior of adhesives used for external FRP strengthening of RC structures, Construction and Building Materials, 25,(2), pp. 461-7, 2011.
[15] Choi K.-K., Reda Taha M.M., Rheological modeling and finite element simulation of epoxy adhesive creep in FRP-strengthened RC beams, Journal of Adhesion Science and Technology, 27,(5-6), pp. 523-35, 2013.
[16] Zehsaz M., Vakili-Tahami F., Saeimi-Sadigh M.-A., Modified creep constitutive equation for an epoxy-based adhesive with nonlinear viscoelastic behavior, The Journal of Strain Analysis for Engineering Design, 50,(1), pp. 4-14, 2015.
[17] Flahaut E., Peigney A., Laurent C., Marliere C., Chastel F., Rousset A., Carbon nanotube–metal–oxide nanocomposites: microstructure, electrical conductivity and mechanical properties, Acta Materialia, 48,(14), pp. 3803-12, 2000.
[18] Geng Y., Liu M.Y., Li J., Shi X.M., Kim J.K., Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites, Composites Part A: Applied Science and Manufacturing, 39,(12), pp. 1876-83, 2008.
[19] Gojny F.H., Wichmann M.H., Fiedler B., Schulte K., Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites–a comparative study, Composites Science and Technology, 65,(15), pp. 2300-13, 2005.
[20] Karapappas P., Vavouliotis A., Tsotra P., Kostopoulos V., Palpetis A., Enhanced fracture properties of carbon reinforced composites by the addition of multi-wall carbon nanotubes, Journal of Composite Materials, 2009.
[21] Siengchin S., Karger-Kocsis J., Structure and creep response of toughened and nanoreinforced polyamides produced via the latex route: Effect of nanofiller type, Composites Science and Technology, 69,(5), pp. 677-83, 2009.
[22] Varela-Rizo H., Weisenberger M., Bortz D.R., Martin-Gullon I., Fracture toughness and creep performance of PMMA composites containing micro and nanosized carbon filaments, Composites Science and Technology, 70,(7), 2010, p. 1189-95.
[23] Yang J.-L., Zhang Z., Schlarb A.K., Friedrich K., On the characterization of tensile creep resistance of polyamide 66 nanocomposites. Part I. Experimental results and general discussions, Polymer, 47,(8), pp. 2791-801, 2006.
[24] Yao Z., Wu D., Chen C., Zhang M., Creep behavior of polyurethane nanocomposites with carbon nanotubes, Composites Part A: Applied Science and Manufacturing, 50, pp. 65-72, 2013.
[25] Marami G., Nazari S.A., Faghidian S.A., Vakili-Tahami F., Etemadi S., Improving the mechanical behavior of the adhesively bonded joints using RGO additive, International Journal of Adhesion and Adhesives, 70, pp. 277-86, 2016.
[26] Zandiatashbar A., Picu C.R., Koratkar N., Control of epoxy creep using graphene, Small, 8,(11), pp. 1676-82, 2012.
[27] Tang L.-C., Wang X., Gong L.-X., Peng K., Zhao L., Chen Q., et al., Creep and recovery of polystyrene composites filled with graphene additives, Composites Science and Technology, 91, pp. 63-70, 2014.
[28] Wang X., Gong L.-X., Tang L.-C., Peng K., Pei Y.-B., Zhao L., et al., Temperature dependence of creep and recovery behaviors of polymer composites filled with chemically reduced graphene oxide, Composites Part A: Applied Science and Manufacturing, 69, pp. 288-98, 2015.
[29] Zehsaz M., Vakili-Tahami F., Saeimi-Sadigh M.-A., Parametric study of the creep failure of double lap adhesively bonded joints, Materials & Design, 64, pp. 520-6, 2014.