[1] Taehong. S, Kyung. C. K, Thermodynamic analysis of a novel dual- loop organic Rankine cyclefor engine waste heat and LNG cold. Applied Thermal Engineering, Vol. 100, No. 1, pp.1031–1041, 2016
[2] ذوقی م و جواهرده ک، تحلیل پارامتری و بهینه سازی چرخه رانکین آلی بازیاب با محرک انرژی خورشیدی. نشریه علمی پژوهشی مهندسی و مدیریت انرژی دانشگاه کاشان، ش. 1، ص 54- 65، 1394.
[3] حاج عبداللهی ح و حسن پور م، بهینه سازی فنی - اقتصادی چرخه رانکین آلی به همراه بازیاب با در نظر گرفتن سیالات کاری مختلف. د. 47، ش. 2، ص.31-40، 1396.
[4] شعبانپور ر و مهدی پور ر، تحلیل عملکرد چرخه نیروگاه خورشیدی فرسنل با سیال کاری های مختلف. مجله مهندسی مکانیک دانشگاه تبریز، د. 47، ش. 2، ص. 121-113، 1396.
[5] میراحمدی گلرودباری س و کلته م، تحلیل انرژی و اگزرژی چرخه رانکین دو مرحلهای با بازیاب. دومین همایش ملی انتقال گرمای و جرم ایران، دانشکده مهندسی مکانیک، دانشگاه سمنان، سمنان، ایران، 1393.
[6] Liu. B, Chien. K, Effect of Working Fluid on organic Rankine cycle for waste heat Recovery. Energy, Vol. 29, No. 8 pp. 1207-1217, 2004
[7] Andersen. W.C, Bruno. T.J, Rapid screening of fluids for chemical stability inorganic rankine cycle. applications, Industrial and Engineering Chemistry, Vol. 44, No. 15, pp. 5560–5566, 2005
[8] Zhang. x. R, Yamaguchi. H, et al, Theoretical analysis of a thermodynamic cycle for power and heat production using supercritical carbon dioxide, Energy, Vol. 32, No. 4 pp. 591-599,2007
[9] Aleksandra. B.G, Wladyslow. M, Maximizing the working flow as a way of increasing power output of geothermal power plant, Applied thermal engineering, Vol. 27, No. 11, pp. 2074-2079, 2007
[10] Sahoo. P. K, Exergy economic analysis and optimization of cogeneration system using evolutionary programming, Applied Thermal Engineering, Vol.13, No.28, pp. 1580-88, 2008
[11] Gu. W, Weng, Y. et al, theoretical and experimental investigation of an organic Rankine cycle for west heat recovery system, power and energy, Vol. 223, No.3 pp. 523-533, 2009
[12] Dai. Y. P, Wang G. F, Gao. L, Parametric optimization and comparative study of organic rankine cycle for low grade waste heat recovery. Energy Conversion and management, Vol. 50, No.3, pp. 576-582, 2009
[13] Sayyaadi. H, Sabzaligol. T, Exergy economics optimization of 1000MW light water reactor power generation system. Energy Research, Vol. 33, No. 4, pp. 378-395, 2009
[14] Tchanche. B. F, Papadakis. G, Lambrinos. G, Frangoudakis. A, Criteria for working fluids selection in low-temperature solar organic Rankine cycles. Applied Thermal Engineering, Vol. 29, No. 1, pp. 2468–2476, 2009
[15] Hebrl. F, Buggemann. D, Exergy based fluid selection for a geothermal organic Rankine cycle for combine heat and power generation. Applied Thermal Engineering, Vol. 30, No 12 pp. 1326-1332, 2010
[16] Mikielewicz. D, Mikielewicz. J, a thermodynamic criterion for selection of working fluid for subcritical and supercritical domestic micro CHP, Applied Thermal Engineering, Vol. 30, No. 16, pp. 2357-2362, 2010
[17] Chys. M, van den Broek. M, Vanslambrouck. B, De Paepe, M, Potential of zeotropic mixtures as working fluids in organic Rankine cycles, Energy, Vol. 44, No. 1, pp. 623-632, 2012.
[18] Sprouse. C, Depcik. C. H, Review of organic Rankine cycles for internal combustion engine exhaust waste heat recovery. Applied Thermal Engineering, Vol.51, No.2, pp. 711-722, 2013
[19]چهارطاقی م و بابایی م، تحلیل انرژی و اگزرژی چرخه رانکین آلی با به کارگیری سیالکاری دو جزیی در شرایط مشخص منبع گرمایی. مجلۀمهندسی مکانیک مدرس دانشگاه تربیت مدرس،د. 14، ش. 3، ص 145-156، 1393.
[20] Jian. S, Yin. S, Chun-wei. G., Thermodynamic analysis and performance optimization of an Organic Rankine Cycle (ORC) waste heat recovery system for marine diesel engines. Energy, Vol. 82, No. 1 pp. 976-985, 2015
[21] Roy. J. P, Mishra. M. K, Misra. A, Performance analysis of organic Rankine cycle with superheating under different heat source condition. Applied Energy, Vol. 88, No. 9 pp. 2995-3004, 2011
[22] Athanasios. I, On the systematic design and selection of optimal working fluids for Organic Rankine Cycles. Applied Thermal Engineering, Vol.30, No 8, PP. 760–769, 2010
[23] Wan. J, Sun. Z, Dai. Y., and Ma. S, “Parametric optimization design for supercritical CO2 power cycle using genetic algorithm and artificial neural network,” Appl. Energy, vol. 87, no. 4, pp. 1317–1324, Apr. 2010.
[24] Fergani. Z, Touil. D, and Morosuk. T, “Multi-criteria exergy based optimization of an Organic Rankine Cycle for waste heat recovery in the cement industry,” Energy Convers. Manag., vol. 112, pp. 81–90, Mar. 2016.