رفتار مکانیکی صفحات مشبک کامپوزیتی چندمقیاسی اپوکسی- الیاف شیشه- نانوذرات رس تحت آزمون خمش سه‌نقطه‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته دوره دکتری، دانشکده مهندسی و علم مواد، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران استادیار، گروه مهندسی مواد، دانشکده مهندسی شهید نیکبخت، دانشگاه سیستان و بلوچستان، زاهدان، ایران

2 دانشیار، دانشکده مهندسی و علم مواد، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

چکیده

در این تحقیق، تاثیر افزودن نانوذرات رس بر رفتار مکانیکی صفحات مشبک کامپوزیتی تحت بارگذاری عرضی (خمش سه­نقطه­ای) مورد بررسی قرار گرفت. در گام نخست، به منظور ایجاد فصل مشترک قوی­ بین زمینه اپوکسی و نانوذرات رس، این نانوذرات توسط عامل کوپلینگ تری گلیسیداکسی پروپیل تری متوکسی سیلان (3-GPTS) اصلاح سطحی شدند. از الیاف تک­جهته شیشه به عنوان جز تقویت­کننده در ریب­ها، از پارچه الیاف شیشه با بافت دوبعدی ساده به عنوان تقویت­کننده در پوسته و همچنین از مخلوط رزین اپوکسی به همراه نانوذرات رس اصلاح سطحی شده با درصدهای وزنی مختلف صفر، 1، 3 و 5 درصد به عنوان زمینه در ساخت سازه­های مشبک کامپوزیتی با هندسه ایزوگرید استفاده شدند. روند اصلاح سطحی نانوذرات رس توسط آزمون طیف­سنجی مادون قرمز تبدیل فوریه و پراش اشعه ایکس مورد تایید واقع شد. نتایج به دست آمده از آزمون نشان دادند که افزودن 5 درصد وزنی نانوذرات رس اصلاح سطحی شده باعث بهبود قابل توجه خواص خمشی کامپوزیت­ها شامل سفتی، نیروی حداکثر و جذب انرژی به میزان 32، 24 و 34 درصد می­شود. همچنین مشاهده شد که در صفحات مشبک کامپوزیتی بخش قابل توجهی از جذب انرژی پس از شکست اولیه در نقطه بار حداکثر است که موید تلورانس تخریب بالای این سازه­ها می­باشد.

کلیدواژه‌ها


[1] Sorrentino L., Marchetti M., Bellini C, Delfini A., Albano M., Design and manufacturing of an isogrid structure in composite material: Numerical and experimental results, Composite Structures, Vol. 143, pp. 189-201, 2016.
[2] Ebrahimnezhad-Khaljiri H., Eslami-Farsani R., Khorsand H., Abbas-Banaie K., Hybridization effect of fibers reinforcement on tensile properties of epoxy composites, Journal of  Science and Technology of Composites. Vol. 1, No. 2, pp. 21-28, 2015 (In Persian).
[3] Hedayatian M., Liaghat Gh., Rahimi Gh., Pol M. H., Numerical and experimental analyses projectile penetration in grid cylindrical composite structures under high velocity Impact, Modares Mechanical Engineering, Vol. 14, No. 9, pp. 17-26, 2014 (In Persian).
[4] Talezadehlari A., Rahimi Gh. H., Buckling analysis of stiffened composite cylindrical shell based on the modified smear method, Modares Mechanical Engineering, Vol. 15, No. 11, pp. 319-329, 2015 (In Persian).
[5] Wang D., Abdalla M. M., Global and local buckling analysis of grid-stiffened composite panels, Composite Structures, Vol. 119, pp. 767-776, 2015.
[6] Kim T. D., Fabrication and testing of thin composite isogrid stiffened panel, Composite Structures, Vol. 49, No. 1, pp. 21-25, 2000.
[6] Totaro G., Local buckling modelling of isogrid and anisogrid lattice cylindrical shells with hexagonal cells, Composite Structures, Vol. 95, pp. 403-410, 2013.
[7] Hedayatian M., Liaghat Gh., Rahimi Gh.,  Pol M. H., Khoshsorour M., Experimental study on dynamic response of grid cylindrical composite structures under high velocity impact, Modares Mechanical Engineering, Vol. 14, No. 2, pp.41-46, 2014 (In Persian).
[8] Naderi A. A., Rahimi Gh., Simple method for buckling load of composite conical Lattice structures under axial load, Modares Mechanial Engineering, Vol. 14, No. 15, pp. 290-298, 2015 (In Persian).
[9] Gibson R. F., Energy absorption in composite grid structures, Advanced Composite Materials, Vol. 14, No. 2, pp. 113-119, 2005.
[10] Helmy S., Hoa S. V., Tensile fatigue behavior of tapered glass fiber reinforced epoxy composites containing nanoclay, Composites Science and Technology, Vol. 102, pp. 10-19, 2014.
[11] Sivasaravanan S., Raja V. K. B., Impact characterization of epoxy LY556/E-glass fibre/nano clay hybrid nano composite materials, Procedia Engineering, Vol. 97, pp. 968-974, 2014.
[12] Singh S. K., Singh S., Sharma S., Sharma V., Strength degradation of mechanical properties of unidirectional E- glass fiber epoxy resin nanoclay composites under hygrothermal loading conditions, Procedia Materials Science  Vol. 5, pp. 1114-1119, 2014.
[13] Silva H., Ferreira J. A. M., Costa J. D. M., Capela C. A., Study of mixed mode interlaminar fracture on nanoclay enhanced epoxy/glass fiber composites, Ciência & Tecnologia dos Materiais, Vol. 25, No. 2, pp. 92-97, 2013.
[14] Withers G. J., Yu Y., Khabashesku V. N., Cercone L., Hadjiev V. G., Souza J. M., Davis D. C., Improved mechanical properties of an epoxy glass-fiber composite reinforced with surface organomodified nanoclays, Composites Part B: Engineering, Vol. 72, pp. 175-182, 2015.
[15] Zamani R., Rahimi Gh., Pol M. H., Hedayatian M., Reinforcing effect of nanoclay on buckling behavior of nanocomposite grid shells: experimental investigation, Modares Mechanical Engineering, Vol. 15, No. 3, pp. 411-418, 2015 (In Persian).
[16] Khosravi H., Eslami-Farsani R., An experimental investigation into the effect of surface-modified silica nanoparticles on the mechanical behavior of E-glass/epoxy grid composite panels under transverse loading, Journal of  Science and Technology of Composites, Vol. 3, No. 1, pp. 11-20, 2016 (In Persian).
[17] Sharma S. C., Sheshadri T. S., Krishna M., Murthy H. N. N., Jose J., Influence of solvents on the MWCNT/adhesive grade epoxy nanocomposites preparation, Journal of Reinforced Plastics and Composites, Vol. 28, No. 22, pp. 2805-2812, 2008.
[18] ASTM D7264/D7264M–07: Standard test method for flexural properties of polymer matrix composite materials, 2007.
[19] Gan C., Gibson R. F., Newaz G. M., Analytical experimental investigation of energy absorption in grid-stiffened composite structures under transverse loading, Exprimental Mechanics, Vol. 44, No. 2, pp. 185-194, 2004.
[20] Gates H. P., Infrared spectroscopy and the chemistry of dioctahedral smectites, T. Kloprogge (Eds.), Vibrational spectroscopy of layer silicates and hydroxides CMS workshop lectures, The Clay Minerals Society, Aurora, Co., Colorado, 2005.
[21] Romanzini D., Piroli V., Frache A., Zattera A. J., Amico S. C., Sodium montmorillonite modified with methacryloxy and vinylsilanes: Influence of silylation on the morphology of clay/unsaturated polyester nanocomposites, Appllied Clay Science, Vol. 114, pp. 550-557, 2015.
[22] Mishra A. K., Allauddin S., Narayan R., Aminabhavi T. M., Raju K. V. S. N., Characterization of surface-modified montmorillonite nanocomposites, Ceramic International, Vol. 38, No. 2, pp. 929-934, 2012.
[23] Dorigato A., Morandi S., Pegoretti A., Effect of nanoclay addition on the fiber/matrix adhesion in epoxy/glass composites, Journal of Composite Materials, Vol. 46, No. 12, pp. 1439-1451, 2011.
[24] Zunjarrao S. C., Sriraman R., Singh R. P., Effect of processing parameters and clay volume fraction on the mechanical properties of epoxy-clay nanocomposites, Journal of Materials Science, Vol. 41, No. 8, pp. 2219-2228, 2006.
[25] Aboubakr S. H., Kandil U. F., Reda Taha M. Creep of epoxy-clay nanocomposite adhesive at the FRP interface: A multi-scale investigation, International Journal of Adhesion and Adhesives, Vol. 54, pp. 1-12, 2014.
[26] Houshyar S., Modelling of polypropylene fibre-matrix composites using finite element analysis, eXPRESS Polymer Letters, Vol. 3, No. 1, pp. 2-12, 2008.
[27] Eslami-Farsani R., Khalili S. M. R., Hedayatnasab Z., Soleimani N., Influence of thermal conditions on the tensile properties of basalt fiber reinforced polypropylene-clay nanocomposites, Materials and Design, Vol. 53, pp. 540-549, 2014.