کنترل مود لغزشی یک شناور زیرسطحی خودکار در شرایط عدم قطعیت پارامتری و نویزحسگر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی مکانیک، دانشگاه حکیم سبزواری، سبزوار، ایران

2 دانشجوی دکتری، گروه مهندسی برق، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

کنترلگر مود لغزشی با توجه به مقاوم بودن برای کنترل شناور زیرسطحی بسیار مناسب است. پیچیدگی محیط زیر آب و وجود اغتشاشات سبب می‌شود کنترلگرهای مقاوم از جمله کنترل مود لغزشی در عمل نتایج خوبی را به همراه داشته باشد. در این مقاله کنترلگر مود لغزشی برای هر دو کانال سمت و عمق شناور خودکار زیرسطحی بکار برده شدهو نتایج برای سیستم خطی و غیرخطی در شرایط عدم قطعیت پارامترها و نیز وجود نویز مورد بررسی قرار گرفته است. در صورت وجود نویز اندازه‌گیری یا معیوب بودن حسگرها، استفاده از مشاهده‌گرهای حالت می‌تواند در بهبود نتایج، کمک بزرگی نماید. بدین منظور مشاهده‌گر فیلتر کالمن برای تخمین متغیر حالت بکار برده شده است. نتایج نشان‌دهنده کارایی بالای کنترلگر مود لغزشی و فیلتر کالمن در رهگیری مسیر دلخواه می‌باشد.

کلیدواژه‌ها

موضوعات


[1] Caccia M., Bono R. and Bruzzone G. B., Variable Configuration UUVs for Marine Science Applications. IEEE Robotics and Automation Magazine, Vol. 6, pp. 22-32, 1999.
[2] Zhang L. J., Jia H. M. andJiang D. P., Sliding Mode Prediction Control for 3D Path Following of an Underactuated AUV. 19th IFAC World Congress, Cape Town, South Africa, August 24-29, 2014.
[3] Calyo O., Sousa A., Rozenfeld A. and Acosta G., Smooth Path Planning for Autonomous Pipeline Inspections. The 6th International Multi-Conference on Systems, Signals and Devices, Tunisia, 2009.
[4] Lapierre L. and Soetanto D., Nonlinear Path Following Control of an AUV. Ocean Engineering, Vol. 34, pp. 1734–1744, 2007.
[5] Li J. H. and Lee P. M., A Neural Network Adaptive Controller Design for Free-Pitch-Angle Diving Behavior of an Autonomous Underwater Vehicle. Robotics and Autonomous Systems, Vol. 52, No. 2, pp. 132-147, 2005.
[6] Silvestre C., Cunha R., Paulino N. and Pascoal A., A Bottom-Following Preview Controller for Autonomous Underwater Vehicles. IEEE Transactions on control systems technology, Vol. 17, No. 2, pp. 257-266, 2009.
[7] Bessa W. M., Dutra M. S. and Kreuzer E., Depth Control of Remotely Operated Underwater Vehicles Using an Adaptive Fuzzy Sliding Mode Controller. Robotics and Autonomous Systems, Vol. 56, pp. 670-677, 2008.
[8] Wang Y., Gu L., Gao M., Jia X., Zhou J., Liu J. and Zhou D., Depth Control of Remotely Operated Vehicles Using Nonsingular Fast Terminal Sliding Mode Control Method. Oceans Conference, San Diego, CA, 2013.
[9] Fossen T. I. and Sagatun S., Adaptive Control of Nonlinear System: A Case Study of Underwater Robotic Systems. Journal of Robotics System, Vol. 8, pp. 393-412, 1991.
[10] Cristi R., Papoulias F. A. and Healey A. J., Adaptive Sliding Mode Control of Autonomous Underwater Vehicles in the Dive Plane. IEEE Journal of Oceanic Engineering, Vol. 15, pp.152-160, 1990. 
[11] Marco D. B. and Healey A. J., Command, Control, and Navigation Experimental Results with the NPS ARIES AUV. IEEE Journal of Oceanic Engineering, Vol. 26, pp. 466-476, 2001.
[12] Ha T. K., Binugroho E. H., Seo Y. B. and Choi J. W., Sliding Mode Control for Autonomous Underwater Vehicle under Open Control Platform Environment. Society of Instrument and Control Engineers of Japan Annual Conference, Tokyo, Japan, August 20-22, 2008.
[13] Zhou H., Liu K. and Feng X., State Feedback Sliding Mode Control without Chattering by Construction Hurwitz Matrix for AUV Movement. International Journal of Automation and Computing, Vol. 8, No. 2, pp. 262-268, 2011.
[14] Kwon S. T., Shin D. H. and Joo M. G., Way-Point Tracking of AUV Using Sliding Mode Controller. The Journal of Korean Institute of Information Technology, Vol. 10, pp. 17-22, 2012.
[15] Zhang M. and Chu Z., Adaptive Sliding Mode Control Based on Local Recurrent Neural Networks for Underwater Robot. Ocean Engineering, Vol. 45, pp. 56-62, 2012.
[16] Essa W. M., Dutra M. S. and Kreuzer E., An Adaptive Fuzzy Sliding Mode Controller for Remotely Operated Underwater Vehicles. Robotics and Autonomous Systems, Vol. 58, pp. 16-26, 2010.
[17] Esfahani H. N. and Azimirad V., A New Fuzzy Sliding Mode Controller with PID Sliding Surface for Underwater Manipulators. International Journal of Mechatronics, Electrical and Computer Technology, Vol. 3, No. 9, pp. 224-249, 2013.
[18] Xiao M., Modeling and Adaptive Sliding Mode Control of the Catastrophic Course of a High-speed Underwater Vehicle. International Journal of Automation and Computing, Vol. 10, No. 3, pp. 210-216, 2013.
[19] Jin M., Lee J., Chang P. H. and Choi C., Practical Nonsingular Terminal Sliding-Mode Control of Robot Manipulators for High-Accuracy Tracking Control. IEEE Transactions on Industrial Electronics, Vol. 56, pp. 3593-3601, 2009.
[20] Yu S., Yu X., Shirinzadeh B. and Man Z., Continuous Finite-Time Control for Robotic Manipulators with Terminal Sliding Mode. Automatica, Vol. 41, No. 11, pp. 1957-1964, 2005.
[21] Zak M., Terminal Attractor for Addressable Memory in Neural Network. Physics Letters A, Vol. 133, pp. 18-22, 1988.
[22] Aghababa M. P., A Novel Terminal Sliding Mode Controller for a Class of non-Autonomous Fractional-Order Systems. Nonlinear Dynamics, Vol. 73, pp. 679-688, 2013.
[23] Dadras S. and Momeni H. R., Passivity-Based Fractional-Order Integral Sliding-Mode Control Design for Uncertain Fractional-Order Nonlinear Systems. Mechatronics, Vol. 23, pp. 880-887, 2013.
[24] Delavari H., Ghaderi R., Ranjbar A. and Momani S., Fuzzy Fractional Order Sliding Mode Controller for Nonlinear Systems, Communications in Nonlinear Science and Numerical Simulation, Vol. 15, No. 4, pp. 963-978, 2010.
[25] Dadras S. and Momeni H. R., Fractional-Order Dynamic Output Feedback Sliding Mode Control Design for Robust Stabilization of Uncertain Fractional-Order Nonlinear System. Asian Journal of Control, Vol. 16, pp. 1-9, 2014.
[26] Chatchanayuenyong T. and Parnichkun M., Neural Network Based-Time Optimal Sliding Mode Control for an Autonomous Underwater Robot, Mechatronics, Vol. 16, pp. 471–478, 2006
[27] Healey A. J. and Lienard D., Multivariable Sliding Mode Control for Autonomous Diving and Steering of Unmanned Underwater Vehicles. IEEE Journal of Oceanic Engineering, Vol. 18, No. 3, pp. 327-339, 1993.
[28] Lea R. K., Allen R. and Merry S. L., A Comparative Study of Control Techniques for an Underwater Flight Vehicle. International Journal of Systems Science, Vol. 30, No. 9, pp. 947-964, 1999.
[29] Fossen T. I., Guidance and Control of Ocean Vehicles. New York, Wiley, 1995.
[30] Prestero J. T., Verification of a Six-Degree of Freedom Simulation Model for the REMUS AUV. Master’s Thesis, MIT, Department of Ocean and Mechanical Engineering, 2001.
[31] Yang C., Modular Modeling and Control for Autonomous Underwater Vehicle (AUV). Master’s Thesis, Department of Mechanical Engineering, National University of Singapore, 2007.
[32] Hall R. and Anstee R., Trim Calculation Methods for a Dynamical Model of the REMUS 100 Autonomous Underwater Vehicles. Maritime Operations Division, DSTO-TR-2576, 2011.
[33] Mishra S. and Dinesh K., Heading Control of an Underwater Vehicle. Bachelor Thesis, Department of Electrical Engineering, National Institute of Technology, Rourkela, 2012.