اثر ایجاد روکش کامپوزیتی حاوی دی بوراید تیتانیوم به روش جوشکاری توپودری بر رفتارهای سایش و سختی فولاد ساده کربنی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه مهندسی مکانیک، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران

2 استاد، دانشکده مهندسی و علم مواد، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

3 کارشناسی ارشد، گروه مهندسی مواد، واحد کرج، دانشگاه آزاد اسلامی، تهران، ایران

4 استادیار، گروه مهندسی مواد، واحد کرج، دانشگاه آزاد اسلامی، تهران، ایران

5 دانشجوی دکتری، دانشکده مهندسی و علم مواد، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

چکیده

در این کار پژوهشی، سه لایه جوش کامپوزیتی حاوی ذرات دی­بوراید تیتانیوم (TiB2) بر روی فولاد ساده کربنی ST37 به وسیله فرآیند جوشکاری توپودری توسط سیم­جوش­های حاوی 100% پودر TiB2 و دیگری حاوی 50% پودر TiB2 به همراه 50% پودر آهن اعمال شد. سپس از آزمون­های سایش و سختی­سنجی برای بررسی رفتار سختی و سایش نمونه­ها استفاده شد. نتایج نشان داد که با افزایش درصد حجمی TiB2 در ریزساختار، سختی لایه­ها افزایش یافت. همچنین بالاترین مقاومت به سایش مربوط به لایه سوم نمونه جوشکاری شده با سیم جوش حاوی 50% پودر TiB2 و پس از آن مربوط به لایه اول نمونه جوشکاری شده با سیم جوش حاوی 100% پودر TiB2 بود. بررسی میکروسکوپ الکترونی روبشی سطوح سایش نمونه­ها نیز نشان داد که با افزایش درصد حجمی TiB2 در لایه­ها، عمق خطوط سایش به ترتیب در لایه­های سوم و دوم، کاهش و مقدار کندگی ذرات از سطح نیز به ترتیب در لایه­های سوم و دوم نسبت به لایه اول افزایش یافت. همچنین مشخص شد که مکانیزم سایش با افزایش لایه­ها، از شخم­زنی به کندگی تغییر کرد.

کلیدواژه‌ها


[1]  Liu D., Liu R. and Wei Y., Effects of Titanium Additive on Microstructure and Wear Performance of Iron-Based Slag-Free Self-Shielded Flux-Cored Wire. Surface and Coatings Technology, Vol. 207, pp. 579-586, 2012.
[2]   ثابت ح.، تکنولوژی و متالورژی جوشکاری. نشر فنی امیر، 1387.
[3]  Olson D. L., Siewert T. A., Liu S. and Edwards G. R., Metals Handbook-Vol 6-Welding, Brazing and Soldering. American Society for Metals, 1993.
[4]   Katherasan D., Sathiya P. and Raja A., Shielding Gas Effects on Flux Cored Arc Welding of AISI 316L (N) Austenitic Stainless Steel joints. Materials & Design, Vol. 45, pp. 43-51, 2013.
[5]  Katherasan D., Elias J. V., Sathiya P. and Haq A. N., Flux Cored Arc Welding Parameter Optimization Using Particle Swarm Optimization Algorithm. Procedia Engineering, Vol. 38, pp. 3913-3926, 2012.
[6]  Rao N. V., Reddy G. M. and Nagarjuna S., Weld Overlay Cladding of High Strength Low Alloy Steel with Austenitic Stainless Steel – Structure and Properties. Materials and Design, Vol. 32, No. 4, pp. 2496-2506, 2011.
[7]  Molleda F., Mora J., Molleda F. J., Mora E., Carrillo E. and Mellor B. G., A Study of the Solid–Liquid Interface in Cobalt Base Alloy (Stellite) Coatings Deposited by Fusion Welding (TIG). Materials Characterization, Vol. 57, No. 4-5, 227-231.
[8]  Lu S-P., Kwon O-Y., Kim T-B. and Kim K-H., Microstructure and Wear Property of Fe-Mn-Cr-M-V Alloy Cladding by Submerged Arc Welding. Journal of Materials Processing Technology, Vol. 147, No. 2, pp. 191-196, 2004.
[9]  Coronado J. J., Caicedo H. F. and Gomez A. L., The Effects of Welding Processes on Abrasive Wear Resistance for Hardfacing Deposits. Tribology International, Vol. 42, No. 5, pp. 745–74, 2009.
[10]   Sapate S. G. and RamaRoa A.V., Erosive Wear Behaviour of Weld Hardfacing High Chromium Cast Irons: Effect of Erodent Particles. Tribology International, Vol. 39, No. 3, pp. 206-212, 2006.
[11]   Cha L., Lartigue-Korinek S., Walls M. and Mazerolles L., Interface Structure and Chemistry in a Novel Steel-Based Composite Fe–TiB2 Obtained by Eutectic Solidification. Acta Materialia, Vol. 60, No. 18, pp. 6382-6389, 2012.
[12]   Darabara M., Papadimitriou G. D. and Bourithis L., Tribological Evaluation of Fe–B–TiB2 Metal Matrix Composites. Surface and Coatings Technology, Vol. 202, No. 2, pp. 246-253, 2007.
[13]   Darabara M., Papadimitriou G. D. and Bourithis L., Production of Fe–B–TiB2 Metal Matrix Composites on Steel Surface. Surface and Coatings Technology, Vol. 201, No. 6, pp. 3518-3523, 2006.
[14]   Zhang P., Wang X., Guo L., Cai L. and Sun H., Characterization of in Situ Synthesized TiB2 Reinforcements in Iron-Based Composite Coating. Applied Surface Science, Vol. 258, No. 4, pp. 1592-1608, 2011.
[15]   Wu D., Wang X., Zhang P., Cai L. and Sun H., Defects in the in Situ Synthesized TiB2/Fe Composite Coatings during PTA Process. Applied Surface Science, Vol. 257, No. 23, pp. 10119-10125, 2011.
[16]   Pierson H. O., Handbook of Refractory Carbides and Nitrides. Noyes Publish, New Jersey, 1996.
[17]   Du B., Fabrication of in Situ Fe-Ti-B Composite Coating by Laser Clading. Surface Review and Letters, Vol. 20, No. 3-4, pp. 1-8, 2013.
[18]   Du B., Zou Z., Wang X. and Qu S., Laser Cladding of in Situ TiB2/Fe Composite Coating on Steel. Applied Surface Science, Vol. 254, No. 20, pp. 6489-6494, 2008.
[19]   Ziemnicka-Sylwester M., Gai L. and Miura S., Effect of (Ti:B) Atomic Ratio on Mechanical Properties of TiB2–Fe Composites “in Situ” Fabricated via Self-Propagating High-Temperature Synthesis. Materials & Design, Vol. 69, pp. 1-11, 2015.
[20]   Springer H., Aparicio Fernandez R., Duarte M. J., Kostka A. and Raabe D., Microstructure Refinement for High Modulus in-Situ Metal Matrix Composite Steels via Controlled Solidification of the System Fe–TiB2. Acta Materialia, Vol. 96, pp. 47-56, 2015.
[21]   Seong-Hun C., Correlation of Microstructure with the Wear Resistance and Fracture Toughness of Hardfacing Alloys Reinforced with Complex Carbides. Metallurgical and Materials Transaction, Vol. 31, No. 12, pp. 3041-3049, 2000.
[22]   Dallaire S., Development of Cored Wires for Improving the Abrasion Wear Resistance of Austenitic Stainless Steel. Journal of Thermal Spray Technology, Vol. 6, No. 4, pp. 456-462, 1997.