بررسی تأثیر عملیات سطحی و افزودن نانوذرات بر خواص مکانیکی چندلایه‌های الیافی فلزی با استفاده از روش رویه پاسخ

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی مکانیک، دانشگاه گیلان، رشت، ایران

2 دانشیار، گروه مهندسی مکانیک، دانشگاه گیلان، رشت، ایران

3 استاد، گروه مهندسی مکانیک، دانشگاه گیلان، رشت، ایران

چکیده

در این مقاله، تأثیر فرآیندهای مختلف عملیات­سطحی و افزودن نانورس بر خواص مکانیکی چندلایه­های الیافی فلزی مورد بررسی قرار گرفته است. به این منظور، آلیاژ 3105 آلومینیوم تحت فرآیندهای مختلف آماده­سازی شامل چربی­زدایی، سایش مکانیکی، سونش شیمیایی، کروماته­کردن و ترکیبی از این فرآیندها مورد عملیات­سطحی قرار گرفت. سپس چندلایه­های الیافی فلزی با استفاده از ورق­های آلومینیوم، رزین اپوکسی خالص و بهبودیافته با نانورس و الیاف شیشه توسط روش لایه­گذاری دستی تولید شدند. تأثیر فرآیندهای مختلف آماده­سازی سطح و استفاده از نانوذرات بر خواص خمشی و ضربه­ای نمونه­ها با بهره­گیری از طراحی آزمایش­ها به روش رویه پاسخ مورد بررسی قرار گرفت. نتایج به‌دست‌آمده نشان داد که کروماته­کردن سطح فلز مؤثرترین نقش را در افزایش خواص مکانیکی نمونه­ها دارد. درحالی‌که چربی­زدایی در بین فرآیندهای مختلف آماده­سازی سطوح، کمترین اثر را در بهبود خواص مکانیکی چندلایه­های الیافی فلزی دارا است. همچنین بررسی­ نتایج تحلیل عوامل تأثیرگذار اصلی نشان داد که به‌رغم نقش مفید نانورس در بهبود خواص مکانیکی چندلایه­های الیافی فلزی، نقش فرآیندهای آماده­سازی سطح مؤثرتر از افزودن نانوذرات است.

کلیدواژه‌ها

موضوعات


[1]  Vogelesang L. B., and Vlot A., Development of fibre metal laminates for advanced aerospace structures. Journal of Material Process and Technology, Vol. 103, No. 1, pp. 1-5, 2000.
[2]  Alderliesten R. C., and Benedictus R., Fiber/metal composite technology for future primary aircraft structures. Journal of Aircraft, Vol. 45, No. 4, pp. 1182-1189, 2008.
[3]  Vlot A., Impact loading on fibre metal laminates. International Journal of Impact Engineering, Vol. 18, No. 3, pp. 291–307, 1996.
[4]  Truong H. T., Lagoudas D. C., Ochoa O. O., and Lafdi K., Fracture toughness of fiber metal laminates: Carbon nanotube modified Ti–polymer–matrix composite interface.  Journal of Composite Materials, Vol. 0, No. 0, pp. 1-14, 2013.
[5]  Lee S., Kim D., Kim Y., Jung U., and Chung W., Effect of aluminum anodizing in phosphoric acid electrolyte on adhesion strength and thermal performance. Metals and Materials International, Vol. 22, No. 1, pp 20–25, 2016.
[6]  Sinmazçelik T., Avcu E., Bora M. O., and Çoban O., A review: Fibre metal laminates, background, bonding types and applied test methods. Materials and Design, Vol. 32, pp. 3671–3685, 2011.
[7]  Yun I. H., Kim W. S., Kim K. H., Jung J. M, Lee J. J., and Jung H. T., Highly enhanced interfacial adhesion properties of steel-polymer composites by dot-shaped surface patterning. Journal of Applied Physicals, Vol. 109, No. 7, pp. 074302, 2011.
[8]  Alfano M., Lubineau G., Furgiuele F., and Paulino G. H., Study on the role of laser surface irradiation on damage and decohesion of Al/epoxy joints. International Journal of Adhesion & Adhesives, Vol. 39, pp. 33-41, 2012.
[10]   Alamri H., and Low I. M., Effect of water absorption on the mechanical properties of nano-filler reinforced epoxy nanocomposites. Materials & Design, Vol. 42, pp. 214-222, 2012.
[11]   Haque A., Shamsuzzoha M., Hussain F., and Dean D., S2-glass/epoxy polymer nanocomposites: manufacturing, structures, thermal and mechanical properties. Journal of Composite Materials, Vol. 37, No. 10, pp. 1821-1837, 2003.
[12]   پل محمد حسین.، لیاقت غلام حسین.، مهربانی یگانه عرفان. و افروزیان علی.، بررسی تجربی تأثیر نانو ذرات رس و سیلیکا در خواص مکانیکی مواد مرکب شیشه/ اپوکسی. نشریه علمی پژوهشی مدرس، د. 44، ش. 16، ص 76-82، 1393.
[13]   کبودوند عماد.، اسلامی فارسانی رضا.، و خسروی حامد.، اثر افزودن نانولوله­های کربنی چند جداره عامل­دار بر رفتار خمشی سازه­های کامپوزیتی الیاف-فلز. دومین کنفرانس بین­المللی دستاوردهای نوین پژوهشی در مکانیک، صنایع و هوافضا، تهران، ایران، 1395.
[14]   Zhang H., Gn S. W., An J., Xiang Y., Yang J. L., Impact behaviour of GLAREs with MWCNT modified epoxy resins. Experimental Mechanics, Vol. 54, No. 1  pp. 83-93, 2014.
[15]   Ning H., Improvement on interlaminar mechanical properties of carbon fiber reinforced plastic and fiber metal laminates, MSc. Thesis, Chiba University, 2015.
[16]   Critchlow G. W., Yendall K. A., Bahrani D., Quinn A., and Andrews F., Strategies for the replacement of chromic acid anodising for the structural bonding of aluminium alloys. International Journal of Adhesion and Adhesives, Vol. 26, pp. 419-53, 2006.
[17]   Bas D., and Boyaci I. H., Modeling and optimization I: Usability of response surface methodology. Journal of Food Engineering, Vol. 78, No. 3, pp. 836-845, 2007.
[18]   Agubra V. A., Owuor P. S., and Hosur M. V., Influence of nanoclay dispersion methods on the mechanical behavior of E-glass/epoxy nanocomposites. Nanomaterials, Vol. 3, pp. 550-563, 2013.
[19]   Kusmono K., Wildan M. W., and Mohd Ishak Z. A., Preparation and properties of clay-reinforced epoxy. International Journal of Polymer Science, Vol. 2013, pp. 1-7, 2013.