اثر نوسان یک رشته ی الاستیک پشت استوانه صلب بر کاهش ضریب پسآ در جریان سیال تراکم‌ناپذیر: روش مرز غوطه ور-شبکه بولتزمن-شبکه فنر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه مهندسی مکانیک، دانشگاه صنعتی شاهرود، شاهرود، ایران

2 دانشیار، گروه مهندسی مکانیک، دانشگاه صنعتی شاهرود، شاهرود، ایران

چکیده

تحقیق حاضر یک حل عددی از تقابل سازه­ی الاستیک-سیال تراکم ناپذیر با استفاده از روش مرز غوطه­ور است، که در آن فاز جامد یک رشته­ الاستیک قرار گرفته پشت یک استوانه صلب در جریان سیال است. هدف، بررسی اثرات متقابل این رشته و استوانه بر یکدیگر و به طور خاص اثر رشته الاستیک بر کاهش ضریب پسآی استوانه است. در روش مرز غوطه­ور، فاز جامد و سیال در دو ناحیه مجاز از هم حل می­شوند. برای حل جریان و مومنتوم فاز سیال از معادلات شبکه بولتزمن استفاده شده است. در تحقیق حاضر رشته­ الاستیک برخلاف تحقیقات گذشته بدون نیاز به حل معادلات ساختاری پیوسته جامد الاستیک، به صورت یک شبکه از جرم های متمرکز و المانهای فنر که می­تواند خواصی چون مدول الاستیسیته و صلبیت خمشی رشته­ الاستیک را پوشش دهد، مدل شده و با روش مرز غوطه­ور با حل جریان مرتبط است. نتایج نشان داده است که جرم، هندسه و محل قرار گیری رشته پشت استوانه­ صلب، بر پایداری و کاهش ضریب پسآی آن اثر گذار است. اثبات وجود یک نقطه­ کمینه ضریب پسآ و تحلیل آن به عنوان دیگر زمینه­ تفاوت این تحقیق با تحلیل­های پیشین محسوب می­شود.

کلیدواژه‌ها


[1] Wassarman P. M., "Contribution of mouse egg zona pellucida glycoproteins to gamete recognition during fertilization", J.Cell. Physiol. 204 388–391 2005.
[2] Talbot  P., DiCarlantonio G., Zao P., Penkala J., Haimo L. T., "Motile cells lacking hyaluronidase can penetrate the hamster oocyte cumulus complex", Dev. Biol. 108 387–398 1985.
[3] Svitkina  T. M., Borisy G. G., "Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia", J. Cell Biol. 145 1009–1026 1999.
[4] Schuster  B. S., Suk  J. S., Woodworth G. F., Hanes J., "Nanoparticle diffusion in respiratory mucus from humans without lung disease", Biomaterials 34 3439-3446 2013.
[5] R. Mittal., G. Iaccarino., "IMMERSED BOUNDARYMETHODS", Annu. Rev. Fluid Mech. 37 239-261 2005.
[6] Peskin CS., "Flow patterns around heart valves - numerical method", Journal of Computational Physics  10 252-271 1972.
[7] Peskin CS., "Numerical analysis of blood flow in the heart", Journal of Computational Physics 25 220-252 1977.
 
[8] Lai MC., Peskin CS., "An immersed boundary method with formal second-order accuracy and reduced numerical viscosity", Journal of Computational Physics 160 705-719 2000.
[9] Goldstein D., Handler R., Sirovich L., "Modeling a no-slip flow boundary with an external force-field", Journal of Computational Physics 105 354-366 1993.
[10] Saiki EM., Biringen S., "Numerical simulation of a cylinder in uniform flow: Application of a virtual boundary method", Journal of Computational Physics 123 450-465 1996.
[11] Mohd-Yusof J., "Combined immersed boundaries/B-spline methods for simulations of flows in complex geometries", CTR Annual Research Briefs, NASA Ames/Stanford University, Stanford, CA, 1997.
[12] Fadlun EA., Verzicco R., Orlandi P., Mohd-Yusof J,. "Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations", Journal of Computational Physics 161 35-60 2000.
[13] Kim J., Kim D., Choi H., "An immersed-boundary finite-volume method for simulations of flow in complex geometries", Journal of Computational Physics 171 132-150 2001.
[14] Chen S., Doolen G. D., " Lattice Boltzmann Method For Fluid Flows", Annu. Rev. Fluid Mech. 30 329 1998.
[15] Yu D., Mei M. R., Luo L. S., Shyy W., " Viscous flow computations with the method of lattice Boltzmann equation", Prog. Aerosp. Sci 39 329–367 2003.
[16] Benzi  R., Succi S., Vergassola M., " The lattice Boltzmann equation: theory and applications",Phys. Rep. 222 145-197 1992.
 
[17] Mussa A., Asinari P., Luo L. S., " Lattice Boltzmann simulations of 2D laminar flows past two tandem cylinders", J. Comput. Phys. 228, 983–999 2009.
[18] X. Ku And J. Lin, " Numerical Simulation Of The Flows Over Two Tandem Cylinders By Lattice Boltzmann Method", Mod. Phys. Lett. B. 19 1551 2005.
[19] Kang Shin K., Yassin Hassan A., " A comparative study of direct-forcing immersed boundary-lattice Boltzmann methods for stationary complex boundaries", Int. J. Numer. Meth. Fluids 66 1132–1158 2011.
[20] Zhou Q., Fan LS., "A second-order accurate immersed boundary-lattice Boltzmann method for particle-laden flows", Journal of Computational Physics 268 269–301 2014.
[21] Favier J., Revell A., Pinelli A. A., "Lattice Boltzmann–Immersed Boundary method to simulate the fluid interaction with moving and slender flexible objects", Journal of Computational Physics 261 145–161 2014.
[22] Sui Y., Chew Y. T., Roy P., Chen X. B., Low H. T., "Transient deformation of elastic capsules in shear flow: Effect of membrane bending stiffness", PHYSICAL REVIEW E 75 066301 2007.
[23] Sui Y., Chew Y. T., "A Lattice Boltzmann Study On The Largedeformation Of Red Blood Cells In Shear Flow",
[24] Techet A. H., Hover F. S., Triantafyllou M. S., "Separation and turbulence control in biomimetic flows", Flow, Turb. Combust. 24 715–734 1997.
[25] Connell B. S. H., "Numerical investigation of the flow-body interaction of thin flexible foils and ambient flow", PhD thesis, Massachusetts Institute of Technology, Cambridge, MA 2006.
[26] Gray J., "Studies in animal locomotion. I. The movement of fish with special reference to the eel", J. Expl Biol. 10 88–104 1933.
[27] Coene R., "Flutter of slender bodies under axial stress", Appl. Sci. Res. 49 175–187 1992.
[28] Zhang J., Childress S., Libchaber A., Shelley M., "Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind", Nature 408 835 2000.
[29] Connell Benjamin. S. H., Yu Dick. K. P., "Flapping Dynamics Of A Flag In A Uniform Stream", Journal Of Fluid Mechanics., 581 33- 67 2007.
[30] Shelley M., Childress S., Zhang J., "Inertia dynamics of filaments, manuscript in preparation".
[31] Luoding Zhu., Peskin Charles S., " Simulation of a Flapping Flexible Filament in a Flowing Soap Film by the Immersed Boundary Method", Journal of Computational Physics 179 452–468  2002.
[32] Tian Fang-Bao., Luo Haoxiang., Zhu Luoding., Liao James C., Lu Xi-Yun, " An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments", Journal of Computational Physics 230 7266–7283 2011.
[33] Yu Zhaosheng., " A DLM/FD method for fluid/flexible-body interactions", Journal of Computational Physics 207 1–27 2005.
[34] Monette L., Anderson M. P., " Elastic and fracture properties of the two-dimensional triangular and square lattices", Madelling Simul. Mater. Sci. Eng. 2  53-66 1994.
[35] Buxton Gavin. A., Care Christopher. M., Cleaver Douglas. J., " A lattice spring model of heterogeneous materials with Plasticity", Modelling Simul. Mater. Sci. Eng. 9 485–497 2001.
[36] Buxton GA., Verberg R., Jasnow D., Balazs AC., "Newtonian fluid meets an elastic solid: coupling lattice Boltzmann and lattice–spring models", Physical Review E 71 056707 2005.
[37] Dupin M., Halliday I., Care C., Alboul L., Munn L., "Modeling the flow of dense suspensions of deformable particles in three dimensions", Physical Review E 75 066707 2007.
[38] Jingshu Wu., Aidun Cyrus K., " Simulating 3D deformable particle suspensions using lattice Boltzmann method with discrete external boundary force", Int. J. Numer. Meth. Fluids 62 765–783 2010.
[39] Bhatnagar PL., Gross EP., Krook M., A "model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems", Phys Rev 94 511–525 1954.
[40] Amiri Delouei A., Nazari M., Kayhani M. H., Succi S., "Non-Newtonian unconfined flow and heat transfer over a heated cylinder using the direct-forcing immersed boundary–thermal lattice Boltzmann method", PHYSICAL REVIEW E 89  053312-053313 2014.
[41] Amiri Delouei, A., Nazari M., Kayhani M.H., Ahmadi G,. "A non-Newtonian direct numerical study for stationary and moving objects with various shapes: An immersed boundary–Lattice Boltzmann approach", Journal of Aerosol Science 93 45-62 (2016).
[42] Amiri Delouei, A., Nazari M., Kayhani M.H., Kang S.K., Succi S., "Non-Newtonian particulate flow simulation: A direct-forcing immersed boundary–lattice Boltzmann approach", Physica A: Statistical Mechanics and its Applications 447 1-20 (2016).
[43]  Guo Z., Zheng C., Shi B., "Discrete lattice effects on the forcing term in the lattice Boltzmann method", Phys Rev E65 046308 2002.
[44] Peskin C. S., " The immersed boundary method", Acta Numerica 11 479-517 2002.
[45] Zou Qisu., He Xiaoyi., "On pressure and velocity boundary conditions for the lattice Boltzmann BGK model", Phys. Fluids 9 1591 1997.
[46] Beal D.N., Hover F.S., Triantafyllou M.S., Liao  J.C., Lauder G.V., "Passive propulsion in vortex wakes", J. Fluid Mech, 549 385–402 2006.
[47] Jia L.B., Yin X.Z., "Response modes of a flexible filament in the wake of a cylinder in a flowing soap film", Phys. Fluids 21 101704  2009.
[48] Zhu L., Peskin C.S., "Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method", J. Comput. Phys. 179 452–468, 2002.
[49] Shelley M., Vandenberghe N., Zhang J., "Heavy flags undergo spontaneous oscillations in flowing water, Phys. Rev. Lett, 94 094302 2005.
[50] Connell B.S.H., Yue D.K.P., "Flapping dynamics of a flag in a uniform stream", J. Fluid Mech., 581 33–67 2007.
[51] Schouveiler L., Eloy C., "Coupled flutter of parallel plates", Phys. Fluids 21 081703  2009.
[52] Shi X., Phan-Thien N., "Distributed lagrange multiplier/fictitious domain method in the framework of lattice Boltzmann method for fluid-structure Interactions", J. Comput. Phys., 206 81–94 2005.
[53] Gao T., Tseng Y.H., Lu X.Y., "An improved hybrid cartesian/immersed boundary method for fluid-solid flows", Int. J. Numer. Meth. Fluids., 55 1189–1211 2007.
[54] Lima A.L.F., Silveira-Neto A., Damasceno J.J.R., "Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method", J. Comput. Phys. 189 351–370 2003.
[55] Xu S., Wang Z.J., "An immersed interface method for simulating the interaction of a fluid with moving boundaries", J. Comput. Phys. 216 454–493 2006.