مقایسه مدل های خاکستری و مجموع وزنی گازهای خاکستری بر پایه خط طیف در طراحی معکوس چشمه های حرارتی در محیط های غیرخاکستری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، بخش مهندسی مکانیک، دانشگاه شهید باهنر کرمان، کرمان، ایران

2 استاد، بخش مهندسی مکانیک، دانشگاه شهید باهنر کرمان، کرمان، ایران

چکیده

در این مطالعه تخمین توزیع مجهول چشمه­های گرمایی توسط یک روش بهینه­سازی انجام می­شود به طوری که شرایط مطلوب حرارتی (دما و شار گرما) بر روی سطح طراحی ایجاد گردد. محیط مورد بررسی یک محیط غیرخاکستری، جذب­کننده-صادرکننده و غیرپخشی بوده که در حالت تعادل تابشی قرار دارد. روش جهت­های مجزا برای حل معادله انتقال تابش استفاده می­گردد. به منظور شبیه­سازی تابش در محیط­های غیرخاکستری، از دو مدل خاکستری و مجموع وزنی گازهای خاکستری بر پایه خط طیف استفاده می­شود. مسأله معکوس از طریق کمینه کردن یک تابع هدف و توسط روش بهینه­سازی گرادیان مزدوج حل می­شود. به منظور اثبات توانایی روش پیشنهاد شده برای دستیابی به شرایط مطلوب حرارتی، چندین مثال با ترکیب­های مختلف مورد بررسی قرار گرفته است. هر چند مدل خاکستری یک روش سریع به حساب می­آید، این روش دارای خطای زیاد بوده و نتایج آن به هیچ وجه قابل اعتماد نمی­باشند. در مقایسه با مدل خاکستری، روش مجموع وزنی گازهای خاکستری بر پایه خط طیف دارای دقت قابل قبول بوده که روشی کارآمد و قدرتمند در احتساب اثرات غیرخاکستری محیط می­باشد.

کلیدواژه‌ها


[1]     Daun K. J., Howell J. R., and Morton D. P., Design of radiant enclosures using inverse and non-linear programming techniques. Inverse Problems in Engineering, Vol. 11, No. 6, pp. 541-560, 2003.
[2]     Hosseini Sarvari S. M., Mansouri S. H., and Howell J. R., Inverse Boundary Design Radiation Problem in Absorbing-Emitting Media with Irregular Geometry. Numerical Heat Transfer, Part A: Applications, Vol. 43, No. 6, pp. 565-584, 2003.
[3]     Hosseini Sarvari S. M., Mansouri S. H., and Howell J. R., Inverse Design of Three-Dimensional Enclosures with Transparent and Absorbing-Emitting Media Using an Optimization Technique. International Communications in Heat and Mass Transfer, Vol. 30, No. 2, pp. 149-162, 2003.
[4]     Hosseini Sarvari S. M., Howell J. R., and Mansouri S. H., Inverse Boundary Design Conduction-Radiation Problem in Irregular Two-Dimensional Domains. Numerical Heat Transfer, Part B: Fundamentals, Vol. 44, No. 3, pp. 209-224, 2003.
[5]     Hosseini Sarvari S. M., and Mansouri S. H., Inverse Design for Radiative Heat Source in Two-Dimensional Participating Media. Numerical Heat Transfer, Part B: Fundamentals, Vol. 46, No. 3, pp. 283-300, 2004.
[6]     Pourshaghaghy A., Pooladvand K., Kowsary F., and Karimi-Zand K., An inverse radiation boundary design problem for an enclosure filled with an emitting, absorbing, and scattering media. International Communications in Heat and Mass Transfer, Vol. 33, No. 3, pp. 381-390, 2006.
[7]     Franca F. H. R., Oguma M., and Howell J. R., Inverse radiation heat transfer within enclosures with non-isothermal, non-gray participating media. In Proceedings of the ASME Heat Transfer Division, Anaheim, California, 1998.
[8]     Modest M. F., The weighted-sum-of-gray-gases model for arbitrary solution methods in radiative transfer. ASME Journal of Heat Transfer, Vol. 113, No. 3, pp. 650-656, 1991.
[9]     Goutière V., Liu F., and Charette A., An assessment of real-gas modelling in 2D enclosures. Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 64, No. 3, pp. 299-326, 2000.
[10] Bayat N., Mehraban S., and Hosseini Sarvari S. M., Inverse boundary design of a radiant furnace with diffuse-spectral design surface. International Communications in Heat and Mass Transfer, Vol. 37, No. 1, pp. 103-110, 2010.
[11] Hoffmann R. S., Seewald A., Schneider P. S., and Franca F. H. R., Inverse design of thermal systems with spectrally dependent emissivities. International Journal of Heat and Mass Transfer, Vol. 53, No. 5-6, pp. 931-939, 2010.
[12] Payan S., Hosseini Sarvari S. M., and Behzadmehr A., Inverse Boundary Design Radiation Problem within Combustion Enclosures with Absorbing-Emitting Non-Gray Media. Numerical Heat Transfer, Part B: Fundamentals, Vol. 65, No. 11, pp. 1114-1137, 2014.
[13] Amiri H., and Mansouri S. H., Inverse boundary design problems in enclosures with non-grey media. Heat Transfer Engineering, Vol. 38, No. 2, pp. 227-243, 2017.
[14] Denison M. K., and Webb B. W., A spectral line-based weighted-sum-of-gray-gases model for arbitrary RTE solvers. ASME Journal of Heat Transfer, Vol. 115, No. 4, pp. 1004-1012, 1993.
[15] Denison M. K., and Webb B. W., Development and application of an absorption-line blackbody distribution function for CO2. International Journal of Heat and Mass Transfer, Vol. 38, No. 10, pp. 1813-1821, 1995.
[16] Denison M. K., and Webb B. W., The spectral line-based weighted-sum-of-gray-gases model in nonisothermal nonhomogeneous media. ASME Journal of Heat Transfer, Vol. 117, No. 2, pp. 359-369, 1995.
[17] Denison M. K., and Webb B. W., The spectral line weighted sum of gray gases model for H2O/CO2 mixtures. ASME Journal of Heat Transfer, Vol. 117, No. 3, pp. 788-792, 1995.
[18] Denison M. K., and Webb B. W., An absorption-line blackbody distribution function for efficient calculation of total gas radiative transfer. Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 50, No. 5, pp. 499-510, 1993.
[19] Colomer G., Cònsul R., and Oliva A., Coupled radiation and natural convection: Different approaches of the SLW model for a non-gray gas mixture. Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 107, No. 1, pp. 30-46, 2007.
[20] Atashafrooz M., Gandjalikhan Nassab S. A., and Lari, K., Numerical analysis of interaction between non-gray radiation and forced convection flow over a recess using the full-spectrum k-distribution method. Heat and Mass Transfer, Vol. 52, No. 2, pp. 361-377, 2016.
[21] Atashafrooz M., Gandjalikhan Nassab S. A., and Lari, K., Coupled thermal radiation and mixed convection step flow of .non-gray gas. ASME Journal of Heat Transfer, Vol. 138, No. 7, pp. 072701-9, 2016.
[22] Demarco R., Consalvi J. L., Fuentes A., and Melis S., Assessment of radiative property models in non-gray sooting media. International Journal of Thermal Sciences, Vol. 50, No. 9, pp. 1672-1684, 2011.
[23] Payan, S., Farahmand, A., and Hosseini Sarvari, S. M., Inverse boundary design radiation problem with radiative equilibriumin combustion enclosures with PSO algorithm. International Communications in Heat and Mass Transfer, Vol. 68, pp. 150-157, 2015.
[24] Rothman L. S., Gordon I. E., Barber R. J., Dothe H., Gamache R. R., Goldman A., Perevalov V. I., Tashkun J.  and Tennyson S. A., HITEMP, the high-temperature molecular spectroscopic database. Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 111, No. 15, pp. 2139-2150, 2010.
[25] Pearson J. T., Webb B. W., Solovjov V. P., and Ma J., Efficient representation of the absorption line blackbody distribution function for H2O, CO2, and CO at variable temperature, molefraction, and total pressure. Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 138, pp. 82-96, 2014.
[26] Modest M. F., Radiative Heat Transfer. McGraw-Hill, New York, 2003.
[27] Ozisik M., and Orlande H., Inverse Heat Transfer, Taylor & Francis, New York, 2000.
[28] Chu H., Liu F., and Zhou H., Calculations of gas radiation heat transfer in a two-dimensional rectangular enclosure using the line-by-line approach and the statistical narrow-band correlated-k model. International Journal of Thermal Sciences, Vol. 59, pp. 66-74, 2012.
[29] Amiri H., and Lari K., Comparison of global radiative models in two-dimensional enclosures at radiative equilibrium. International Journal of Thermal Sciences, Vo. 104, pp. 423-436, 2016.