طراحی بهینه هندسه سیستم تعلیق مک فرسون برای یک خانواده محصول بر مبنای نظریه پلتفرم مشترک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد، دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران، ، تهران، ایران

2 استادیار، دانشکده مهندسی خودرو، دانشگاه علم و صنعت ایران، تهران، ایران

3 دانشجوی دکتری، دانشکده مهندسی خودرو، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

در این مقاله هدف بدست آوردن الگوریتمی برای طراحی هندسه­ی سیستم­تعلیق خودرو جهت استفاده در خانواده­ی محصولات در کلاس های مختلف خودرو می­باشد. این الگوریتم به­گونه­ای طراحی می­شود که پارامترهای طراحی خانواده محصول با تغییر از یک کلاس خودرو به کلاس دیگر خودرو بیشترین اشتراک را با هم داشته باشند. بدین­منظور در ابتدا هندسه­ی سیستم تعلیق مورد بررسی قرار می­گیرد و پارامترهای موثر در هندسه­ی سیستم­تعلیق خودرو جهت استفاده در پلتفرم­های مختلف مورد استفاده قرار می­گیرد. در ادامه الگوریتمی جهت طراحی پلتفرمی خودرو بر مبنای روابط ریاضی حاکم بر انواع حرکت‌های نوسانی خودرو با اعمال ورودی‌های تصادفی جاده به سیستم تعلیق ارایه می­گردد. در این الگوریتم نقاط حساس در طراحی هندسه­ی سیستم­تعلیق با رویکرد ایجاد بیشترین اشتراک در پلتفرم­های مختلف خودرو تبیین می­گردد. در انتها سیستم تعلیقی برای 5 محصول خودروی تندر90 شامل خودروهای سدان، وانت، هاچ بک، استیشن واگن (مینی ون) و خودروی MPV ارایه می­گردد که با حفظ بیشترین اشتراک در کلاس­های مختلف خودرو الزامات مرتبط با آسایش سرنشین را برآورده نماید. مقایسه نتایج بدست آمده از سیستم تعلیق بهینه و تندر90 معمولی بیانگر کارایی این روش می­باشد.

کلیدواژه‌ها

موضوعات


[1] Simpson T. W., Siddique Z., J., Roger J., Platform-Based product family development', Springer, 2006.
[3] Timothy W. S.Jianxin J., Siddique Z., product platform and product family design-methods and applications, Springer, 2007.
[4] Jaeil P., Timothy W. S. ,''Toward an activity-based costing system for product families andproduct platforms in the early stages of development, Int. J. Prod. Res., vol. 46, no. 1. pp. 99-130, 2008.
[5] Simpson T.W., Jiao J., Siddique Z., Hölttä-Otto K., Advances in Product Family and Product Platform Design,Methods&Application, pringer, 2014 .
[6] Tan H., Jiang P., Yao B., Hui X., Flexible Product Platform Based on Design Parameters' Springer, pp 7-15, 2011.
[7] Zhongkai L., Zhihong Ch., Yixiong F., Jinyong Y., An integrated method for flexible platform modular architecture design, Journal of Engineering Design, Vol. 24, No. 1, 2013.
[8] Al-Zaher A. , ElMaraghy W., Design Method of Under-body Platform Automotive Framing Systems, Procedia CIRP, Vol. 17, pp. 380-385, 2014.
[9] Fallah M.S., Bhat R., Xie W.F., New model and simulation of Macpherson suspension system for ride control applications, Vehicle Syst. Dyn., Vol.47, No. pp. 195–220, 2009.
[10] Sandua C., Andersenb E. R., Southward S., Multibody dynamics modeling and system identification of a quarter-car test rig with McPherson strut suspension, Vehicle Syst. Dyn., Vol. 49, No. 1, pp. 153–179, 2011.
[11] Hurel J., Nonlinear Two-Dimensional Modeling of a McPherson Suspension for Kinematics and Dynamics Simulation, The 12th IEEE International Workshop on Advanced Motion Control, Sarajevo, Bosnia and Herzegovina, March 25-27, 2012.
[12] Nemeth B., Gaspar P., Set-based analysis of the variable-geometry suspension system, 19th World Congress The International Federation of Automatic Control Cape Town, South Africa. August 24-29, 2014.
[13] Kropac O., Mucka P., Be careful when using the International Roughness Index as an indicator of road unevenness, J. Sound Vib., Vol. 287, pp. 989–1003, 2005.
[14] Dodds C. J., Robson J. D., ''The description of road surface roughness'', J. Sound Vib, vol. 31, no. 2, pp. 175–183, 1973.
[15] Shirahatt A.s, Optimal Design of Passenger Car Suspension for Ride and Road Holding', J. Braz. Soc. Mech. Sci. Eng., Vol. 30, No. 1.2005.