بررسی تأثیرات متغیّرهای فرایند در شکل‌دهی تدریجی گرم تیتانیم Ti-6Al-4V

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی مکانیک، دانشگاه بوعلی سینا، همدان، ایران

2 استاد، گروه مهندسی مکانیک، دانشگاه بوعلی سینا، همدان، ایران

چکیده

روش شکل‌دهی تدریجی ورق از روش‌های جذاب شکل‌دهی ورقی می‌باشد. استفاده از تحلیل‌های اجزاء محدود این روش به‌خصوص در دمای بالا برای آلیاژهایی مثل تیتانیم Ti-6Al-4V در کاهش هزینه‌ی پژوهش‌ نقش بسزایی دارد. در مطالعه‌ی حاضر با استفاده از نتایج آزمایش‌های عملی، اقدام به شبیه‌سازی شکل‌دهی گرم تدریجی تیتانیم گردید و اعتبار آن توسط سه خروجی نمودارهای حدی، عمق شکل‌دهی و کم‌ترین ضخامت ارزیابی شد. سپس اثر عوامل فرایند بر روی نیروهای وارد بر ابزار با در نظر گرفتن حرارت تولیدی حین آزمایش مورد مطالعه قرار گرفت. مشاهده شد که نیروهای عمودی بیش‌ترین مقادیر را در بین این نیروها دارند. به‌علاوه کاهش دمای اولیه‌ی ورق و افزایش گام عمودی و قطر ابزار، این نیروها را افزایش داده است. همچنین مشاهده گردید که هندسه‌ی شکل‌دهی شده و جنس ماده تأثیر بسزایی در تغییرات نیروها دارند. توزیع کرنش‌های مؤثر نیز کشیدگی بیش‌تر ورق را در ناحیه‌ی میانی آن به نمایش گذاشت. در پایان، تحلیل کمانش و تنش‌های وارد بر ابزار نشان داد که بیش‌ترین خطر ناشی از تنش‌های اعمالی به ابزار، از نوع خمشی کششی و ناشی از نیروهای طولی بود.

کلیدواژه‌ها

موضوعات


[1]  Jeswiet J., Micari F., Hirt G., Bramley A., Duflou J. and Allwood J., Asymmetric single point incremental forming of sheet metal. CIRP Annals-Manufacturing Technology, Vol. 54, No. 2, pp. 88-114, 2005.
[2]  Duflou J., Tunckol Y., Szekeres A. and Vanherck P., Experimental study on force measurements for single point incremental forming. Journal of Materials Processing Technology, Vol. 189, No. 1, pp. 65-72, 2007.
[3]  Petek A., Kuzman K. and Kopač J., Deformations and forces analysis of single point incremental sheet metal forming. Archives of Materials science and Engineering, Vol. 35, No. 2, pp. 35-42, 2009.
[4]  Aerens R., Eyckens P., Van Bael A. and Duflou J., Force prediction for single point incremental forming deduced from experimental and FEM observations. The International Journal of Advanced Manufacturing Technology, Vol. 46, No. 9-12, pp. 969-982, 2010.
[5]  Bagudanch I., Centeno G., Vallellano C. and Garcia-Romeu M., Forming force in Single Point Incremental Forming under different bending conditions. Procedia Engineering, Vol. 63, pp. 354-360, 2013.
[6 ] Bagudanch I., Garcia-Romeu M., Centeno G., Elías-Zúñiga A. and Ciurana J., Forming force and temperature effects on single point incremental forming of polyvinylchloride. Journal of Materials Processing Technology, Vol. 219, pp. 221-229, 2015.
[7] Henrard C., Bouffioux C., Eyckens P., Sol H., Duflou J., Van Houtte P., Van Bael A., Duchene L. and Habraken A., Forming forces in single point incremental forming: prediction by finite element simulations, validation and sensitivity. Computational mechanics, Vol. 47, No. 5, pp. 573-590, 2011.
[8] Minutolo F. C., Durante M., Formisano A. and Langella A., Forces analysis in sheet incremental forming and comparison of experimental and simulation results. Intelligent production machines and systems, pp. 229-234, 2011.
[9]  Filice L., Ambrogio G. and Micari F., On-line control of single point incremental forming operations through punch force monitoring. CIRP annals-Manufacturing technology, Vol. 55, No. 1, pp. 245-248, 2006.
[10]         Kim Y. and Park J., Effect of process parameters on formability in incremental forming of sheet metal. Journal of materials processing technology, Vol. 130, pp. 42-46, 2002.
[11]         Ji Y. and Park J., Formability of magnesium AZ31 sheet in the incremental forming at warm temperature. Journal of materials processing technology, Vol. 201, No. 1, pp. 354-358, 2008.
[12]         Durante M., Formisano A., Langella A. and Minutolo F. M. C., The influence of tool rotation on an incremental forming process. Journal of Materials Processing Technology, Vol. 209, No. 9, pp. 4621-4626, 2009.
[13]         Pandivelan C. and Jeevanantham A., Formability Evaluation of AA 6061 Alloy Sheets on Single Point Incremental Forming using CNC Vertical Milling Machine. Journal of Materials and Environmental Science, Vol. 6, pp. 1343-1353, 2015.
[14]         Minutolo F. C., Durante M., Formisano A. and Langella A., Evaluation of the maximum slope angle of simple geometries carried out by incremental forming process. Journal of Materials Processing Technology, Vol. 194, No. 1, pp. 145-150, 2007.
[15]         Bouffioux C., Lequesne C., Vanhove H., Duflou J., Pouteau P., Duchêne L. and Habraken A., Experimental and numerical study of an AlMgSc sheet formed by an incremental process. Journal of Materials Processing Technology, Vol. 211, No. 11, pp. 1684-1693, 2011.
[16]         Dejardin S., Thibaud S., Gelin J.-C. and Michel G., Experimental investigations and numerical analysis for improving knowledge of incremental sheet forming process for sheet metal parts. Journal of Materials Processing Technology, Vol. 210, No. 2, pp. 363-369, 2010.
[17]         Khazaali H. and Fereshteh-Saniee F., A comprehensive experimental investigation on the influences of the process variables on warm incremental forming of Ti-6Al-4V titanium alloy using a simple technique. The International Journal of Advanced Manufacturing Technology, pp. 1-13, 2016.
[18]         Ambrogio G., Ciancio C., Filice L. and Gagliardi F., Theoretical model for temperature prediction in Incremental Sheet Forming–Experimental validation. International Journal of Mechanical Sciences, Vol. 108, pp. 39-48, 2016.
[19]         Place A. T. I. S. P., ATI Ti-6Al-4V, Grade 5 Technical Data Sheet, 1, PA 15222-5479 U.S.A., 2011, pp. 4.
[20]         Guo Z., Saunders N., Schillé J. and Miodownik A., Modelling high temperature flow stress curves of titanium alloys. MRS International Materials Research Conference, Chongqing, China June 9-12, 2008.
[21]         Pohlak M., Küttner R., Majak J., Karjust K. and Sutt A., Simulation of incremental forming of sheet metal products Proceeding of the fourth International DAAAM Conference, Tallinn, Estonia, April 29-30, 2004.
 [22] Li Y., Daniel W. J., Liu Z., Lu H. and Meehan P. A., Deformation mechanics and efficient force prediction in single point incremental forming. Journal of Materials Processing Technology, Vol. 221, pp. 100-111, 2015.
[23]         Duflou J. R., Szekeres A. and Vanherck P., Force measurements for single point incremental forming: an experimental study. Advanced Materials Research, Vol. 6, pp. 441-448, 2005.
[24]         Ghasemi H. and Soltani B., Experimental investigation on the effective parameters on forming force, dimensional accuracy and thickness distribution in single point incremental forming. Modares Mechanical Engineering, Vol. 14, No. 1, pp. 89-96, 2015.
[25] Des Fonderies S. A., Marichal Ketin J., SIRIUS High Speed Steel. Accessed on 25 July 2016;  http://www.mkb.be.
[26] Beer F. P., Jr E. R. J., DeWolf J. T., Mazurek D. F., Mechanics of Materials. McGraw-Hill, New York, 2009.