بررسی اثر درجات آزادی سیستم تعلیق در کنترل غیرخطی پایداری و چرخش حول محور طولی خودرو با استفاده از کنترل کننده مد لغزشی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشگاه شهید باهنر، کرمان، عضو هیات علمی، دانشگاه سیستان و بلوچستان، سیستان و بلوچستان، ایران

2 استاد، گروه مهندسی مکانیک، دانشگاه شهید باهنر، کرمان، ایران

3 دانشیار، گروه مهندسی مکانیک، دانشگاه شهید باهنر، کرمان، ایران

چکیده

سیستم کنترل پایداری جز سیستم­های ایمنی فعال برای خودروها به منظور کنترل حرکت دینامیکی خودرو  در مانورهای خطرناک می‌باشد. درمقاله حاضر ابتدا شبیه‌سازی سیستم تعلیق غیر‌فعال 4 درجه آزادی انجام شده و سپس به منظور بهبود عملکرد سیستم کنترلی، یک سیستم تعلیق 6 درجه آزادی با اضافه کردن جرم به قسمت فنربندی نشده سیستم تعلیق 4 درجه آزادی و استفاده از میراگر نیمه‌فعال هیبردی توسعه داده‌شده است. با اتخاذ این رویکرد جدید، مدل 4 درجه آزادی به مدل 6 درجه آزادی نیمه‌فعال هیبریدی تبدیل می‌شود. برای بررسی کنترل­پذیری سیستم با افزایش درجات آزادی، سیستم تعلیق نیمه‌فعال هیبریدی جدید 8 درجه آزادی با ترکیب مدل 4 و 6 درجه آزادی طراحی و شبیه سازی کنترل­کننده مود لغزشی برای این سیستم­ها انجام شده است و با روش کنترلی PID نیز مقایسه گردیده است. برای شبیه سازی و تحلیل دینامیکی از نرم افزارمتلب استفاده می‌شود. داده های ورودی از مدل سازی حرکت یک خودرو در نرم­افزار کارسیم استخراج شده است. نتایج شبیه سازی نشان میدهد که افزایش درجات آزادی به همراه به کارگیری دمپر نیمه‌فعال هیبریدی منجر به پایداری بهتر و خوش‌فرمانی بیشتر خودرو می‌شود.

کلیدواژه‌ها

موضوعات


[1] Odenthal D., Bünte T., Ackermann J., Nonlinear steering and braking control for vehicle rollover avoidance, Control Conference (ECC), European, IEEE, pp. 598-603, 1999.
[2] Phanomchoeng G., Rajamani R., Prediction and Prevention of Tripped Rollovers, Intelligent Transportation Systems Institute, Center for Transportation Studies, University of Minnesota, 2012.
[3] National Highway Traffic and Safety Board, http://www.safercar.gov/Vehicle+Shoppers/Rollover/Fatalities, U.S Department of Transportation, 2011.
[4] Walz M C., Trends in the static stability factor of passenger cars, light trucks, and vans, National highway traffic and safety administration, 2005.
[5]   Lu J., Messih D A., Salib., Roll rate based stability control-the roll stability control system, Proceedings of the 20th Enhanced Safety of Vehicles Conference, 2007.
[6] Penny D N., Rollover of sport utility vehicles, The Physics Teacher, Vol.42, pp. 86-91, 2004.
[7] Dahlberg E., Commercial vehicle stability-focusing on rollover, PhD thesis, Royal institute of technology , Stockholm , Sweden , 2001.
[8] Chen B C., Peng H., Rollover warning for articulated heavy vehicles based on a time-to-rollover metric, Journal of dynamic systems, measurement, and control, Vol.127,  pp. 406-414, 2005.
[9] Chen B C., Peng H., Differential-braking-based rollover prevention for sport utility vehicles with human-in-the-loop evaluations:, Vehicle System Dynamics, Vol.36, pp. 359-389, 2001.
[10] Cech I., Anti-roll and active roll suspensions, Vehicle System Dynamics, Vol. 33, pp. 91-106, 2000.
[11] Solmaz S., Corless M., Shorten R., A methodology for the design of robust rollover prevention controllers for automotive vehicles with active steering, International Journal of Control, Vol.80, pp. 1763-1779, 2007.
[12] Solmaz S., Shorten R., Wulff K., Cairbre F O., A design methodology for switched discrete time linear systems with applications to automotive roll dynamics control, Automatica, Vol.44, pp. 2358-2363, 2008.
[13] کاظمی ر. و سعیدی م.، بک سیستم کنترل رول فعال مقاوم برای بهبود پایداری واژگونی خودرو مفصلی حامل سیال. .مجله مهندسی مکانیک مدرس د. 15، ش. 6، ص 353-364، 1394.
[13] Balamurugan L., Jancirani J., M Eltantawie., Generalized magnetorheological (MR) damper model and its application in semi-active control of vehicle suspension system, International Journal of Automotive Technology, Vol.15, pp. 419-427, 2014.
[14] Quoc N V., Park J H., Choi S B., Design of a novel adaptive fuzzy sliding mode controller and application for vibration control of magnetorheological mount, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol.228 pp. 2285-2302, 2014.
[15] Rezapoor J., Bahramijoo B., Jamali A.,  Nariman -zadeh N., Robust optimal multi-objective controller design for vehicle rollover prevention, International Journal of Automotive Engineering Vol. 4, No.4, 2014.
[16] Buckner G D., Schuetze K T., Beno J H., Intelligent feedback linearization for active vehicle suspension control, Journal of dynamic systems, measurement, and control, Vol.123,  pp.727-733, 2001.
[17] Wang J., Shen S., Integrated vehicle ride and roll control via active suspensions, Vehicle System Dynamics, Vol.46,  pp. 495-508, 2008.
[18] Saeedi M A., Kazemi R., Azadi S., Improvement in the rollover stability of a liquid-carrying articulated vehicle via a new robust controller, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2016.
[19] Ahmadian M., Integrating Electromechanical Systems in Commercial Vehicles for Improved Handling, Stability, and Comfort, SAE International Journal of Commercial Vehicles, Vol.7, pp. 535-587.  2014.
[21] Rajamani R., Phanomchoeng G., New rollover index for the detection of tripped and untripped rollovers, IEEE Transactions on Industrial Electronics, Vol.60, pp.4726-4736, 2013.
[22] Slotine J J.E., Li W., Applied nonlinear control, prentice-Hall Englewood Cliffs, NJ, 1991.