[1] KorayemM. H., SadeghzadehS., RahneshinV., HomayooniA., and SafaM., Precise manipulation of metallic nanoparticles: Multiscale analysis,Computational Materials Science, Vol. 67, pp. 11-20, 2013.
[2] KorayemM. H., SadeghzadehS., and HomayooniA., Coupled dynamics of piezo-tube and microcantilever in scanning probe devices and sensitive samples imaging,IET Micro & Nano Letters, Vol. 7, No. 9, pp.986-990, 2012.
[3] KorayemM. H., SadeghzadehS., and HomayooniA., Effects of macro-scale uncertainties on the imaging and automatic manipulation of nanoparticles. Journal of nanoparticle research, Vol. 15, No. 1, pp.1-17, 2013.
[4] ShenY., NakajimaM., AhmadM. R., KojimaS., HommaM., and FukudaT., Effect of ambient humidity on the strength of the adhesion force of single yeast cell inside environmental-SEM, Journal of Ultramicroscopy, Vol. 111, No. 8, pp. 1176-11831-8, 2011.
[5] StarkR. W., Rubio-SierraF. J., ThalhammerS., and HecklW. M., Combined nanomanipulation by atomic force microscopy and UV-laser ablation for chromosomal dissection,Journal of European Biophysics, Vol. 32, pp. 33-39, 2003.
[6] StarkR. W., ThalhammerS., WienbergJ. and HecklW. M., The AFM as a tool for chromosomal dissection – the influence of physical parametersJournal of Applied Physics. A: Materials Science & Processing, Vol. 66, pp. 579-584, 1998.
[7] SchaapA. T., CarrascoC., PabloP., MacKintoshF. C. and SchmidtC. F., Elastic response, buckling, and instability of microtubules under radial indentation,Biophysical Journal, Vol. 91, pp. 1521-1531, 2006.
[8] NarangV., WongS. Y., LeongSh. R., AbastadoJ. P. and GouaillardA., Comparing mathematical modelsMathematical Models of cell adhesionCell Adhesion in tumors,Defense Science Research Conference and Expo (DSR), pp. 1-4, 2011.
[9] MoradiM., FereidonA. H. and SadeghzadehS., Dynamic modeling for nanomanipulation of polystyrene nanorod by atomic force microscope,Scientia Iranica, Vol. 18, No. 3, pp. 808-815, 2011.
[10] KorayemM. H., RahneshinV. and SadeghzadehS., Nano cluster manipulation success considering flexibility of system: Coarse grained molecular dynamics simulations, Scientia Iranica, Vol. 19, No. 5, pp. 1288-1298, 2012.
[11] KorayemM. H., RahneshinV. and SadeghzadehS., Coarse-grained molecular dynamics simulation of automatic nanomanipulation process: The effect of tip damage on the positioning errors, Computational Materials Science, Vol. 60, pp. 201-211, 2012.
[12] KorayemM. H., SadeghzadehS. and RahneshinV., A new multiscale methodology for modeling of single and multi-body solid structures, Computational Materials Science, Vol. 63, pp. 1-11,2012.
[13] WuJ. J., Adhesive contact between a cylinder and a half-space, Journal of Physics D: Applied Physics, Vol. 42, pp. 1-8, 2009.
[14] SundaramM., FarrisT. N. and ChandrasekarS., JKR adhesion in cylindrical contacts, Journal of the Mechanics and Physics of Solids, Vol. 60, pp. 37-54, 2012.
[15] T. Liu, G. Liu, P. Wriggers, and Sh. Zhu, Study on contact characteristicContact Characteristic of nanoscale asperitiesNanoscale Asperities by using molecular dynamics simulations, Journal of Tribology, Vol. 131, pp. 1-10, 2009.
[16] J. L. Lioua, Ch. M. Tsaib, and J. F. Lin, A microcontact model developed for sphere- and cylinder-based fractal bodies in contact with a rigid flat surface, Wear, Vol. 268, pp. 431-442, 2010.
[17] SittiM. and HashimotoH., Teleoperated touch feedback from the surfaces at the nanoscale modeling and experiments, ASME Transaction on Mechatronics, Vol. 8, No. 2, pp. 287-298, 2003.
[18] KorayemM. H.and TaheriM., Modeling of various contact theories for the manipulation of different biological micro/nanoparticles based on AFM,Journal of nanoparticle research,Vol. 16, No. 1, pp. 1-18, 2014.
[19] KorayemM. H. and TaheriM., Simulating the Manipulation of Various Biological Micro/Nanoparticles by Considering a Crowned Roller Geometry, Arabian Journal for Science and Engineering, pp. 1-14, 2016.
[20] KorayemM. H., KhaksarH., HefzabadR. N. and TaheriM., Simulation of soft bacteria contact to be applied in nanomanipulation,Modares Mechanical Engineering, Vol. 14, No. 14, 2015. (In Persian).
[21] KorayemM. H., MahmoodiZ., TaheriM. and SaraeeM. B., Three-dimensional modeling and simulation of the AFM-based manipulation of spherical biological micro/nanoparticles with the consideration of contact mechanics theories, Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, Vol. 229, No. 4, pp. 370-382, 2015.
[22] TaheriM.,3D-DynamicmodelingandsimulationofbiologicalnanoparticlemotionusingAFMnano–robot,ModaresMechanicalEngineering, Vol.15,No.12,pp.311-316,2015. (inPersian)
[23] TaheriM.,Using HK friction model in 3-D manipulation of Au nanoparticle motion in air environment,ModaresMechanicalEngineering, Vol.16,No.12,pp.311-316,2016. (inPersian)
[24] HertzH., Über die Berührung fester elastischer Körper, Journal für die reine und angewandte Mathematik, Vol. 92, pp. 156-171, 1881.
[25] JohnsonK. L., KendallK. and RobertsA. D., Surface energy and the contact of elastic solid, Proc. Roy. Soc. London A, Vol. 324, pp.301-313, 1971.
[26] DerjaguinB. V., MullerV. M. and ToporovYu. P., Effect of Contact Deformations on the Adhesion of Particles,Journal of Colloid and Interface Science, Vol. 53, No. 2, pp.314-326, 1975.
[27]Burnham N. A. and KulikA. J., Surface forces and adhesion,Bhushan B (ed) Handbook of micro/nanotribology, Chap. 5. CRC Press LLC, Boca Raton, 1999.