بررسی تجربی تاثیر همزمان میکرو و نانو پلیمرها بر روی خواص هیدرودینامیکی جریان مغشوش درون یک لوله افقی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد دانشگاه یاسوج

2 دانشیار، گروه مهندسی مکانیک، دانشگاه یاسوج، یاسوج، ایران

3 استادیار، گروه مهندسی مکانیک، دانشگاه یاسوج، یاسوج، ایران

چکیده

در این مقاله به بررسی تجربی تاثیر همزمان میکرو و نانو پلیمر بر روی خواص هیدرودینامیکی شامل افت فشار و ضریب اصطکاک پوسته­ای جریان مغشوش درون یک لوله افقی در اعداد رینولدز مختلف پرداخته شده است. در این کار از ماده افزودنی پلیمر پلی­آکریل­آمید نیمه هیدرولیز شده در مقیاس میکرو و نانو بنامsuperfloc A110  استفاده شده است. به منظور داشتن تحلیل جامعی از شرایط گوناگون آزمایشی، آزمایشات با غلظت­های مختلف ماده پلیمری در مقیاس میکرو و نانو انجام شده است و تاثیر شرایط گوناگون بر روی افت فشار و ضریب اصطکاک بررسی شده است. نتایج نشان می دهد که افزودن پلیمر در اندازه میکرو تا غلظت بهینه ( 0625/0 درصد حجمی) سبب کاهش ضریب اصطکاک می شود.همچنین با اضافه کردن ذرات پلیمری در اندازه نانو به محلول حاوی  ذرات پلیمری در اندازه میکرو بطور همزمان، ضریب اصطکاک تا حدود 58 درصد کاهش می یابد. با افزایش دمای محلول تا حدود 30 درجه سلسیوس گراد نیز کارایی عامل کاهنده پسا  بالاتر می­رود.

کلیدواژه‌ها


[1] Choi H., Moin p. and Kim J., Direct numerical simulation of turbulent flow over riblets. Jounal of Fluid Mech., Vol. 255, pp. 503–539,(1993,
[2] Paschkewitz J. S., Dubief Y., Dimitropoulos C. D., Shaqfeh E. S. G. and Moin P., Numerical simulation of turbulent drag reduction using rigid fibres, Journal of Fluid Mechanics., Vol. 518, pp. 281–317, 2004.
[3] Josef D., Jung Y., Drag reduction by polymer additives in a turbulent channel flow, Journal of Fluid Mechanics. vol. 486, pp. 213-238, 2003.
[4] Hoyt J.w., Drag reduction by polymers and surfactants, SanDiedgo State University, SanDiego, California, pp. 413_432, 1990.
[5] White Ch., Mungal GMechanics and Prediction of Turbulent Drag Reduction whit Polymer Additives, Journal of Annual Review of Fluid Mechanics, Vol. 40, pp. 235-256, 2008.
[6] Dentoonder J.M.J., Hulsen M.A., Kuiken G.D.C., Nieuwstandt F.T.M., Drag reduction By polymer additives in a turbulent pipe flow: numerical and laboratory experiments, Journal of Fluid Mechanics, Vol. 337, pp. 193-231,1997.
[7] Lumley J. L., Drag Reduction by Additives, Annual Review of Fluid Mechanics., Vol. 1, pp. 367-384,1969.
[8] Blatch N. S., Water Filtration at Washington.” Journal of  Engineering Mechanics, Trans. ASCE. Vol. 57, pp. 400-408, 1906.
[9] Toms B.A., Some observation on the flow of linear polymer solution through straight tube at large Reynolds numbers, Proceedings of the First International Congress on Rheology, North  Holland, Amsterdam, Vol. 2, pp. 135–141, 1948.
[10] Mysles K., Flow of Thickened Fluids, US patent 2492173, 1949.
[11] Oliver D.R., Young Hoon A., Two-phase non- Newtonian flow” Journal of Transactions of the Institution of Chemical Engineers, Vol.46, pp.106-115, 1968.
[12] Greskovich, E.J., Shrier, A.L., Pressure drop and hold up horizontal slug flow, Journal of American Institute of Chemical Engineers, Vol.17, pp. 1214–1219, 1971.
[13] Savins J. G., A Stress-Controlled Drag-Reduction Phenomenon, Journal of Rheological Acta, Vol. 6, Issue 4, pp. 323- 330, 1967.
[14] Metzner A. B., Reed J. C., Flow of  Non-Newtonian Fluids-Correlation of the Laminar, Transition and Turbulent- Flow Regions, Journal of American Institute of Chemical Engineers, Vol. 1, pp. 434-440,1955.
[15] Patterson G. K., Zakin J. L. and Rodriguez J. M., Drag  Reduction: Polymer Solutions, Soap­­ Solutions and Particle Suspensions               in Pipe Flow.” Journal of Industrial and Engineering Chemistry, Vol. 61,  pp. 22, 1969.
[16] Virk P. S., Merril E. W., Mickley H. S., Smith K. A. & Mollo- Christensen E. L., The Toms phenomenon-turbulent pipe flow of dilute polymer solutions, Journal of Fluid Mechanics, Vol.30,  pp. 305–328, 1967.
[17] Lester C.B., The basics of drag reduction, Journal of Oil and Gas, pp. 51- 56, Feb 4, 1985.
[18] Zakin J. L. and Chang J. L., Non-Ionic Surfactants as Drag Reducing Additives, Journal of Nature Physics Science, Vol. 239, pp. 26-28, 1972.
[19] Yoon H.K. and Ghajar A. J., A method for correlating the diameter and concentration effect on friction and heat transfer in drag  reducing flow, AIAA thermophysics, plasma dynamics& lasers Conference, June 27-29, San Antonio, Texas,1988.
[20] Mowla D., Hatamipour M.S., Moshfeghian M., A Simple  Model for Prediction of Pressure Drop Horizontal Two-Phase Flow, Iranian Journal of  Science and Technology. Vol. 15, pp. 177–185, 1991.
[21] Sylvester N.D. and Brill J.P, Drag-reduction in two-phase  annular mist flow of air and water, Journal of American Institute of Chemical Engineers. Vol. 22, pp. 615-617, 1976.
[22] White A., Heat Transfer Characteristics of Dilute Polymer Solutions in Fully Rough Pipe Flow, Journal of Nature, Vol. 227, pp.486-487, 1970.
[23] Mowla D., Hatamipour M.S., Moshfeghian M., The Effect of  Dilute Polymer Solution on Drag Reduction in Horizontal Two Phase  Flow, International Journal for Engineering Analysis and design, Vol. 2(4), pp. 97-105, 1995.
[24] Ptasnski p.k., Nieuwstadt F.T.M., Experiments in Turbulent  Pipe Flow with Polymer Additives at Maximum Drag Reduction, J.M. Burgers Centre for Fluid Dynamics Flow, Turbulence And Combustion., Vol. 66, pp.159–182, 2001.
]25[ صادقی ک.، غلامزاده ن.، کاهش ضریب درگ اجرام با استفاده از پوششهای پلیمری، ص 744- 733، نشریه دانشکده فنی، جلد 39 ، شماره 6، دانشگاه تهران،1384.
]26[ نادری ع.، مولا د.، اثر پلیمرها بر کاهش افت فشار در جریان­های دو فازی در لوله­های افقی، ص 31- 30، اولین همایش ملی تخصصی گاز ایران، دانشگاه شیراز، 1385.
[27] Subbarao  Ch.V., King P., BhaskaraSarma C., Prasad V. S. R. K., Drag reduction by Polymer additives in gravity driven flow, International Journal Of Applied Engineering Research, Dindigul., Vol.1, No. 3, pp. 452-468, 2010.
[28] Jhanmyry M., Bahrain A., New techniques for drag reduction objects immersed in a fluid, Mechanical Engineering .Vol. 4,  pp. 14-27, 2011.
[29] Krochak p., Holm R., Drag Reduction Characteristics of Micro-Fibrillated Cellulose Suspensions, Innventia AB, Drotting Kristinas Vag 61, Box 5604, SE-11486 Stockholm,Sweden, 2011.
[30] Kostic M., Friction and Heat Transfer Characteristics of Silica and CNT Nano fluids in a Tube Flow, Proceeding of the 8th  International Conference on Energy & Environment (EE13), Rhodes  Island, Greece July 16-19. ISBN: PP. 960-978, 312-474, 2013.
[31] Moffat R.J., Describing the uncertainties in experimental results, Experimental Thermal and Fluid Science, Vol. 1, pp. 3–17, 1988.