طراحی سیستم فازی مبتنی بر جدول ارجاع جهت مدلسازی و پیش بینی ضریب نفوذ جرم در نانوسیالات

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، گروه مهندسی شیمی، دانشگاه مهندسی فناوری‌های نوین قوچان، قوچان، ایران

چکیده

در این پژوهش با استفاده از طراحی یک سیستم استنتاج فازی مبتنی بر جدول ارجاع نفوذ جرم اسید بنزوئیک در نانوسیالات پایه آبی گاما آلومینا و سیلیکا مدلسازی و پیش بینی شده است. همچنین برای ارزیابی سیستم فازی طراحی شده، ضریب نفوذ اسید بنزوئیک در نانوسیال در دمای ثابت C 20 با استفاده از یک روش ساده و ارزان اندازه گیری شد و با نتایج مدل فازی مقایسه شده است. نتایج نشان دادند که سیستم فازی طراحی شده با دقت بالایی می­تواند فرآیند نفوذ جرم اسید بنزوئیک در نانوسیالات را تقلید کند. انحراف بین داده­های آزمایشگاهی و مدل فازی برای نانوسیالات گاما آلومینا و سیلیکا به ترتیب  حدود 939/0 و 997/0 می­باشد. اندازه گیری ضریب نفوذ در نانوسیالات نشان داد که در غلظت­های پایین نانوذرات، ضریب نفوذ تغییری ندارد. اما با افزایش غلظت نانوذرات سیلیکا کاهش قابل ملاحظه ای در ضریب نفوذ اسید بنزوئیک مشاهده شد، بطوریکه در نسبت حجمی %8/0 ضریب نفوذ تا %35 کاهش می­یابد. عواملی چون غلظت نانوذرات، جنس نانوذرات و نوع آزمایش جهت تعیین میزان نفوذ جرم، به شدت می­تواند روی فرآیند نفوذ جرم در نانوسیالات تاثیر گذار باشد. 

کلیدواژه‌ها


[1]  Pang  C., Lee J.W. and Kang Y.T., Review on combined heat and mass transfer characteristics in nanofluids. International Journal of Thermal Sciences, Vol. 87, pp. 49-67, 2015.
[2]  Hojjat M., Etemad S. Gh., Bagheri R. and Thibault J., Convective heat transfer of non-Newtonian nanofluids through a uniformly heated circular tube. International Journal of Thermal Sciences, Vol. 50, No. 4, pp. 525-531, 2011.
[3]  Hojjat M., Etemad S. Gh., Bagheri R. and Thibault J., Turbulent forced convection heat transfer of non-Newtonian nanofluids. Experimental Thermal and Fluid Science, vol. 35, no. 7, pp1351-1356, 2011.
[4]  Farajollahi B., S.G. Etemad and Hojjat M., Heat transfer of nanofluids in a shell and tube heat exchanger. International Journal of Heat and Mass Transfer, Vol. 53, No. 1, pp. 12-17, 2010.
[5]  Asadzadeh F., Esfahany M.N. and Etesami N., Natural convective heat transfer of Fe3O4/ethylene glycol nanofluid in electric field. International Journal of Thermal Sciences, Vol. 62, pp. 114-119, 2012.
[6]  Mahrood M.R.K., Etemad S.G. and Bagheri R., Free convection heat transfer of non Newtonian nanofluids under constant heat flux condition. International Communications in Heat and Mass Transfer, vol. 38, no. 10, pp. 1449-145, 2011.
[7]  Nasiri M., Etemad S.G. and Bagheri R., Experimental heat transfer of nanofluid through an annular duct. International Communications in Heat and Mass Transfer, Vol. 38, No. 7, pp. 958-963, 2011.
[8]  Shahmohammadi P. and Beiki H., A numerical investigation of γ-Al2O3-water nanofluids heat transfer and pressure drop in a shell and tube heat exchanger. Transport Phenomena in Nano and Micro Scales, Vol. 2, No. 1, pp. 29-35, 2016.
[9]  Khoshvaght-Aliabadi M. and Alizadeh A., An experimental study of Cu–water nanofluid flow inside serpentine tubes with variable straight-section lengths. Experimental Thermal and Fluid Science, Vol. 61, pp. 1-11, 2015.
[10]             Khoshvaght-Aliabadi M., Hormozi F. and Zamzamian A., Role of channel shape on performance of plate-fin heat exchangers: Experimental assessment. International Journal of Thermal Sciences, Vol. 79, pp. 183-193, 2014.
[11]             Beiki H., Nasr Esfahany M. and Etesami N., Laminar forced convective mass transfer of γ-Al2O3/electrolyte nanofluid in a circular tube. International Journal of Thermal Sciences, Vol. 64, pp. 251-256, 2013.
[12]             Beiki H., Esfahany M. and Etesami N., Turbulent mass transfer of Al2O3 and TiO2 electrolyte nanofluids in circular tube. Microfluidics and Nanofluidics, Vol. 15, No. 4, pp. 501-508, 2013.
[13]             Rouina S., Abdeh H., Bahmanyar H. and Sade A., Investigating the effect of nanoparticles on the dispersed phase mass transfer coefficient in a rotary disc column. Chemical Engineering and Processing: Process Intensification, vol. 104, pp. 84-93, 2016.
[14]             Sara O., Icer F., Yapici S. and Sahin B., Effect of suspended CuO nanoparticles on mass transfer to a rotating disc electrode. Experimental Thermal and Fluid Science, Vol. 35, No. 3, pp. 558-564, 2011.
[15]             Olle B., Bucak S., Holmes T.C., Bromberg L. Hatton T. A. and Wang D.I.C., Enhancement of oxygen mass transfer using functionalized magnetic nanoparticles. Industrial and Engineering Chemistry Research, Vol. 45, No. 12, pp. 4355-4363, 2006.
[16]             Jung J.-Y., Lee J., and Kang Y., CO2 absorption characteristics of nanoparticle suspensions in methanol. Journal of Mechanical Science and Technology, Vol. 26, No. 8, pp. 2285-2290, 2012.
[17]             Lee J.W., Torres-Pineda I., Lee J. H. and Kang Y. T., Combined CO2 absorption/regeneration performance enhancement by using nanoabsorbents. Applied Energy, Vol. 178, pp. 164-176, 2016.
[18]             Park S.-W., Choi B. S., Kim S. S., Lee B. D. and Lee J. W., Absorption of carbon dioxide into aqueous colloidal silica solution with diisopropanolamine. Journal of Industrial and Engineering Chemistry, Vol. 14, No. 2, pp. 166-174, 2008.
[19]             Wen J.P., Jia X.Q. and Feng W., Hydrodynamic and Mass Transfer of Gas‐Liquid‐Solid Three‐Phase Internal Loop Airlift Reactors with Nanometer Solid Particles. Chemical engineering & technology, Vol. 28, No. 1, pp. 53-60, 2005.
[20]             Feng W., Wen J., Fan J., Yuan Q., Jia X. and Sun Y., Local hydrodynamics of gas–liquid-nanoparticles three-phase fluidization. Chemical Engineering Science, Vol. 60, No. 24, pp. 6887-6898, 2005.
[21]             Beiki H., Esfahany M.N. and Etesami N., Laminar Forced Convective Mass Transfer of Nanofluids in a circular Tube. ICHMT DIGITAL LIBRARY ONLINE, 2011.
[22]             Keshishian N., Esfahany M.N. and Etesami N., Experimental investigation of mass transfer of active ions in silica nanofluids. International Communications in Heat and Mass Transfer, Vol. 46, pp. 148-153, 2013.
[23]             Rahmatmand B., Keshavarz P. and Ayatollahi S., Study of Absorption Enhancement of CO2 by SiO2, Al2O3, CNT, and Fe3O4 Nanoparticles in Water and Amine Solutions. Journal of Chemical & Engineering Data, Vol. 61, No. 4, pp. 1378-1387, 2016.
[24]             Esmaeili Faraj S. H., Nasr Esfahany M., Jafari-Asl M. and Etesami N., Hydrogen Sulfide Bubble Absorption Enhancement in Water-Based Nanofluids. Industrial & Engineering Chemistry Research, Vol. 53, No. 43, pp. 16851-16858, 2014.
[25]             Ashrafmansouri S. S., Willersinn S., Nasr Esfahany M. and Bart H. J., Influence of Silica Nanoparticles on Mass Transfer in a Membrane-based Micro-Contactor. RSC Advances, 2016.
[26]             Krishnamurthy S., Bhattacharya P., Phelan P.E. and Prasher R. S., Enhanced mass transport in nanofluids. Nano Letters, Vol. 6, No. 3, pp. 419-423, 2006.
[27]             Fang, X., Y. Xuan, and Q. Li, Experimental investigation on enhanced mass transfer in nanofluids. Applied physics letters, vol. 95, no. 20, pp. 203108, 2009.
[28]             Veilleux J. and Coulombe S., A total internal reflection fluorescence microscopy study of mass diffusion enhancement in water-based alumina nanofluids. Journal of Applied Physics, Vol. 108, No. 10, 2010.
[29]             Gerardi C., Cory D., Buongiorno J., Hu L.W. and McKrell T., Nuclear magnetic resonance-based study of ordered layering on the surface of alumina nanoparticles in water. Applied Physics Letters, Vol. 95, No. 25, pp. 253104, 2009.
[30]             Turanov A.N. and Tolmachev Y.V., Heat- and mass-transport in aqueous silica nanofluids. Heat and Mass Transfer, Vol. 45, No. 12, pp. 1583-1588, 2009.
[31]             Ozturk S., Hassan Y.A. and Ugaz V.M., Interfacial Complexation Explains Anomalous Diffusion in Nanofluids. Nano Letters, Vol. 10, No. 2, pp. 665-671, 2010.
[32]             Subba-Rao V., Hoffmann P.M. and Mukhopadhyay A., Tracer diffusion in nanofluids measured by fluorescence correlation spectroscopy. Journal of Nanoparticle Research, Vol. 13, No. 12, pp. 6313-6319, 2011.
[33]             Feng X. and Johnson D.W., Mass transfer in SiO2 nanofluids: A case against purported nanoparticle convection effects. International Journal of Heat and Mass Transfer, Vol. 55, No. 13-14, pp. 3447-3453, 2012.
[34]             Ashrafmansouri S. S., Nasr Esfahany M., Azimi Gh. and Etesami N., Experimental investigation of water self-diffusion coefficient and tracer diffusion coefficient of tert-butanol in water-based silica nanofluids. International Journal of Thermal Sciences, Vol. 86, pp. 166-174, 2014.
[35]             فرد م.م.، و بیکی ح.، اندازه گیری ضریب نفوذ بنزوئیک اسید در نانوسیال آب- گاما آلومینا در دمای ثابت. مجله شیمی و مهندسی شیمی ایران، سال 34، شماره 1، صفحه 31، 1394.
[36]             بیکی ح.، دادور م. و حلاج ر.، مدلسازی و شبیه سازی کاتالیست تولید دی متیل اتر به روش مدلهای شبکه ای در دو بعد. مجله شیمی و مهندسی شیمی ایران، سال 27، شماره 4، 1387.
[37]             Bahiraei M., Hosseinalipour S. M., Zabihi K. and Taheran E., Using neural network for determination of viscosity in water-TiO2 nanofluid. Advances in Mechanical Engineering, Vol. 4, pp. 74268, 2012.
[38]             Esfe M.H., Saedodin S., Bahiraei M., Toghraie D., Mahian O. and Wongwises S., Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network. Journal of Thermal Analysis and Calorimetry, Vol. 118, No. 1, pp. 287-294, 2014.
[39]             Esfe M.H., Saedodin S., Sina N., Afrand M. and Rostami S., Designing an artificial neural network to predict thermal conductivity and dynamic viscosity of ferromagnetic nanofluid. International Communications in Heat and Mass Transfer, Vol. 68, pp. 50-57, 2015.
[40]             Hojjat M., Etemad S. Gh., Bagheri R. and Thibault J., Thermal conductivity of non-Newtonian nanofluids: experimental data and modeling using neural network. International Journal of Heat and Mass Transfer, vol. 54, no.5, pp. 1017-1023, 2011.
[41]             Yousefi F., Karimi H. and Mohammadiyan S., Viscosity of carbon nanotube suspension using artificial neural networks with principal component analysis. Heat and Mass Transfer, pp. 1-11, 2015.
[42]             Yousefi F., Karimi H. and Papari M.M., Modeling viscosity of nanofluids using diffusional neural networks. Journal of Molecular Liquids, Vol. 175,  pp. 85-90, 2012.
[43]             Hussein A.M., Adaptive Neuro-Fuzzy Inference System of friction factor and heat transfer nanofluid turbulent flow in a heated tube. Case Studies in Thermal Engineering, Vol. 8, pp. 94-104, 2016.
[44]             Salehi H., Zeinali-Heris S., Esfandiary M. and Koolivand M., Nero-fuzzy modeling of the convection heat transfer coefficient for the nanofluid. Heat and Mass Transfer, Vol. 49, No. 4, pp. 575-583, 2013.
[45]             Rahmanian B., Pakizeh M., Esfandiyari M., Heshmatnezhad F. and Maskooki A., Fuzzy modeling and simulation for lead removal using micellar-enhanced ultrafiltration (MEUF). Journal of hazardous materials, Vol. 192, No. 2, pp. 585-592, 2011.
[46]             Lozar J., Laguerie C. and Couderc J.P., Diffusivité de l'acide benzoi'que dans l'eau: Influence de la température. The Canadian Journal of Chemical Engineering, Vol. 53, No. 2, pp. 200-203, 1975.
[47]             Delgado J.M.P.Q., Molecular Diffusion Coefficients of Organic Compounds in Water at Different Temperatures. Journal of Phase Equilibria and Diffusion, Vol. 28, No. 5, pp. 427-432, 2007.
Ashrafmansouri S.S., Willersinn S., Nasr Esfahany M. and Bart H. J., Influence of Silica Nanoparticles on Mass Diffusion in a Membrane-Based Microcontactor. Chemie Ingenieur Technik, Vol. 87, No. 8, pp. 1054-1054, 2015.