تعیین خواص ترمودینامیکی هیدروکربن‌ها با استفاده از معادله حالت نظریه سیالات تجمعی PC_SAFT

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، دانشکده فنی و مهندسی، دانشگاه شهرکرد، شهرکرد، ایران

چکیده

مهندسان جهت شبیه‌سازی فرآیندهای پالایشگاهی معادلات حالتی مورد نیاز هستند که بتوانند به نیازهای آنها پاسخ دهند. در پژوهش حاضر، از معادله‌ حالت PC-SAFT یا نظریه آماری سیالات تجمعی جهت بیش بینی خواص ترمودینامیکی هیدروکربن‌ها استفاده‌شده است. بدین منظور، روابط ترمودینامیکی موردنظر به‌صورت تحلیلی استخراج و با کمک نرم‌افزار MATLAB تمامی مقادیر عددی روابط مربوط به خواص ترمودینامیکی هیدروکربن‌ها نظیر چگالی، انتروپی، انتالپی، انرژی درونی و ظرفیت گرمایی هیدروکربن‌ها پیش‌بینی و ارائه‌شده است. مقایسه نتایج به‌دست‌آمده از کار حاضر با نتایج تجربی نشان داد که این معادله دقت مناسبی در پیش‌بینی خواص ترمودینامیکی هیدروکربن‌ها دارد و قادر است این خواص را در فشارهای بالا و دماهای پایین پیش‌بینی نماید. نتایج حاصل از معادله حالت نظریه سیالات تجمعی کمترین خطا را برای هیدروکربن‌های خالص و بیشترین خطا را برای هیدروکربن‌های مرکب نشان می دهند. علاوه بر این، مقدار حداکثر انحراف مطلق میانگین محاسباتی برای چگالی، انتالپی، انتروپی، انرژی درونی، ظرفیت گرمایی در حجم ثابت و ظرفیت گرمایی در فشارثابت، به ترتیب برابر با 18/1%، 5/2%، 43/0%، 77/0%، 33/3% و 4%  به دست آمد که نشان‌دهنده دقت بالای این معادله حالت است.

کلیدواژه‌ها

موضوعات


[1]           Shah V., Lin Y.-L., Bienkowski P., Cochran H., A generalized quartic equation of state, Fluid Phase Equilibria, Vol. 116, No. 1, pp. 87-93, 1996.
[2]           ABBOTT M. M., Cubic equations of state: an interpretive review,in: Eds. 1979.
[3]           Anderko A., Equation-of-state methods for the modelling of phase equilibria, Fluid Phase Equilibria, Vol. 61, No. 1, pp. 145-225, 1990.
[4]           Justo-García D. N., García-Sánchez F., Díaz-Ramírez N. L., Díaz-Herrera E., Modeling of three-phase vapor–liquid–liquid equilibria for a natural-gas system rich in nitrogen with the SRK and PC-SAFT EoS, Fluid Phase Equilibria, Vol. 298, No. 1, pp. 92-96, 2010.
[5]           McCarty R., Extended corresponding states as a tool for the prediction of the thermodynamic properties of mixtures, International Journal of Thermophysics, Vol. 7, No. 4, pp. 901-910, 1986.
[6]           Estela-Uribe J., Trusler J., Extended corresponding states equation of state for natural gas systems, Fluid Phase Equilibria, Vol. 183, pp. 21-29, 2001.
[7]           Kunz O., de Recherches Gazières G. E., The GERG-2004 wide-range equation of state for natural gases and other mixtures: VDI Verlag, 2007.
[8]           Wendland M., Saleh B., Fischer J., Accurate thermodynamic properties from the BACKONE equation for the processing of natural gas, Energy & fuels, Vol. 18, No. 4, pp. 938-951, 2004.
[9]           Nasrifar K., Bolland O., Prediction of thermodynamic properties of natural gas mixtures using 10 equations of state including a new cubic two-constant equation of state, Journal of Petroleum Science and Engineering, Vol. 51, No. 3, pp. 253-266, 2006.
[10]         EoS A.D., Compressibility and super compressibility for natural gas and other hydrocarbon gases, Transmission Measurement Committee Report, No. 8, 1992.
[11]         Gross J., Sadowski G., Perturbed-chain SAFT: An equation of state based on a perturbation theory for chain molecules, Industrial & engineering chemistry research, Vol. 40, No. 4, pp. 1244-1260, 2001.
[12]         Aparicio-Martínez S., Hall K. R., Use of PC-SAFT for global phase diagrams in binary mixtures relevant to natural gases. 1. n-Alkane+ n-alkane, Industrial & engineering chemistry research, Vol. 46, No. 1, pp. 273-284, 2007.
[13]         Aparicio-Martínez S., Hall K. R., Use of PC-SAFT for global phase diagrams in binary mixtures relevant to natural gases. 3. Alkane+ non-hydrocarbons, Industrial & engineering chemistry research, Vol. 46, No. 1, pp. 291-296, 2007.
[14]         Aparicio-Martínez S., Hall K. R., Use of PC-SAFT for global phase diagrams in binary mixtures relevant to natural gases. 2. n-Alkane+ other hydrocarbons, Industrial & engineering chemistry research, Vol. 46, No. 1, pp. 285-290, 2007.
[15]         Chapman W. G., Gubbins K. E., Jackson G., Radosz M., New reference equation of state for associating liquids, Industrial & engineering chemistry research, Vol. 29, No. 8, pp. 1709-1721, 1990.
[16]         Blum L., Høye J., Mean spherical model for asymmetric electrolytes. 2. Thermodynamic properties and the pair correlation function, The Journal of Physical Chemistry, Vol. 81, No. 13, pp. 1311-1316, 1977.
[17]         Mi J.G., Chen J., Gao G.H., Fei W.Y., Equation of state extended from SAFT with improved results for polar fluids across the critical point, Fluid Phase Equilibria, Vol. 201, No. 2, pp. 295-307, 2002.
[18]         Barker J. A., Henderson D., Perturbation theory and equation of state for fluids. II. A successful theory of liquids, The Journal of Chemical Physics, Vol. 47, No. 11, pp. 4714-4721, 1967.
[19]         Mallard W., Westley F., Herron J., Hampson R., Frizzell D., NIST chemical kinetics database: National Institute of Standards and Technology, 1992.
 [20]        Wu Y., Bamgbade B., Liu K., McHugh M. A., Baled H., Enick R. M., Burgess W. A., Tapriyal D., Morreale B. D., Experimental measurements and equation of state modeling of liquid densities for long-chain n-alkanes at pressures to 265MPa and temperatures to 523K, Fluid Phase Equilibria, Vol. 311, pp. 17-24, 2011.
 [21]        Senol I., Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) Parameters for Propane, Ethylene, and Hydrogen under Supercritical Conditions, disp, Vol. 2, pp. 1, 2011.
[22]         Čapla L., Buryan P., Jedelský J., Rottner M., Linek J., Isothermal PVT measurements on gas hydrocarbon mixtures using a vibrating-tube apparatus, The Journal of Chemical Thermodynamics, Vol. 34, No. 5, pp. 657-667, 2002.
[23]         Patil P., Ejaz S., Atilhan M., Cristancho D., Holste J. C., Hall K. R., Accurate density measurements for a 91% methane natural gas-like mixture, The Journal of Chemical Thermodynamics, Vol. 39, No. 8, pp. 1157-1163, 2007.
[24]         Grini P. G., Owren G. A., Mæhlum H., Isobaric enthalpy increment and isenthalpic Joule–Thomson effect measurements on synthetic gas containing binary, or ternary mixtures of methane, ethane, propane, and nitrogen, The Journal of Chemical Thermodynamics, Vol. 30, No. 8, pp. 1011-1027, 1998.
[25]         Ashton G., Haselden G., Measurements of enthalpy and phase equilibrium for simulated natural gas mixtures and correlation of the results by a modified Starling equation, Cryogenics, Vol. 20, No. 1, pp. 41-47, 1980.
[26]         Setzmann U., Wagner W., A new equation of state and tables of thermodynamic properties for methane covering the range from the melting line to 625 K at pressures up to 100 MPa, Journal of Physical and Chemical Reference Data, Vol. 20, No. 6, pp. 1061-1155, 1991.
[27]         Mayrath J., Magee J., Measurements of molar heat capacity at constant volume: C V, m {xCH 4+(1− x) C 2 H 6, T= 100 to 320 K, p⩽35 MPa}, The Journal of Chemical Thermodynamics, Vol. 21, No. 5, pp. 499-513, 1989.
[28]         Barreau A., Janneteau P., Gaillard K., Isobaric heat capacity of natural gases. Measurements and modelling, Fluid Phase Equilibria, Vol. 119, No. 1, pp. 197-212, 1996.
[29]         Tan S. P. and Piri M., Equation of state modeling of associating-fluids phase equilibria in nanopores, Fluid Phase Equilibria, Vol. 405, pp. 157-166, 2015.
[30]         Kraus E. I. and Shabalin I. I., Afew-parameter equation of state of the condensed matter, Journal of Physics: conference series, doi:10.1088/1742-6596/774/1/012009, 774, 2016.
[31]         Kataoka Y. and Yamada Y., A universal Equation of state for hydrocarbons, Journal of Computer Chemistry Japan, Vol. 14 (1), pp. 10-17, 2015.