بهینه‌سازی چند هدفه سیستم‌های تبرید جذبی با زوج آب - مایع یونی با استفاده از الگوریتم ژنتیک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی مکانیک، دانشگاه تبریز، تبریز، ایران

2 استادیار، گروه مهندسی مکانیک، دانشگاه تبریز، تبریز، ایران

3 استاد، گروه مهندسی مکانیک، دانشگاه تبریز، تبریز، ایران

چکیده

عملکرد چرخه تبرید جذبی علاوه بر پیکربندی و موقعیت اجزای آن، به خواص ترمودینامیکی مخلوط آن نیز بستگی دارد. سیستم­های جذبی متداول از مخلوط­های آب - لیتیوم بروماید و آمونیاک – آب استفاده می­نمایند. بدلیل مشکلات ناشی از استفاده این مخلوط­ها، محقق­ها مایعات یونی را به عنوان جاذب جدید مبردها پیشنهاد کرده­اند. در این تحقیق، عملکرد سیستم تبرید جذبی با دو مایع یونی مختلف از لحاظ ترمودینامیکی و اقتصادی بررسی شده و با سیستم آب – لیتیوم بروماید مقایسه شده است. روش بهینه­سازی چند هدفه با استفاده از الگوریتم ژنتیک به منظور بهینه کردن سیستم استفاده شده است. خصوصیات ترمودینامیکی مخلوط­ها توسط مدل غیرتصادفی دو مایع محاسبه شده­اند. ضریب عملکرد، بازده اگزرژی و نرخ هزینه محصول پارامترهای هستند که بعنوان توابع هدف انتخاب شده­اند، مقادیر بهینه توابع هدف و متغیرهای طراحی بدست آمده و با مقادیر اولیه مقایسه شده­اند. در میان مخلوط­های شامل مایع یونی، بالاترین ضریب عملکرد و بازده اگزرژی و کمترین نرخ هزینه محصول برای زوج آب - 1- اتیل، 3- متیل ایمیدازولیوم تری فلرو استیت بدست آمده است.

کلیدواژه‌ها

موضوعات


[1] H.Z. Hassan, A.A. Mohamad, A review on solar cold production through absorption technology, Renewable and
Sustainable Energy Reviews, 16 (2012) 5331–5348.
[2] M. Sen, S. Paolucci, The use of ionic liquids in refrigeration, Proceedings of IMECE ASME International Mechanical Engineering Congress and Exposition, 2006.
[3] J. Sun, L. Fu, S.G. Zhang, A review of working fluids of absorption cycles, Renewable and Sustainable Energy Reviews, 16 (2012) 1899–1906.
[4] S. Kim, Y.J. Kim, Y.K. Joshi, A.G. Fedorov, P.A. Kohl,  Absorption heat pump/refrigeration system utilizing ionic liquid and hydrofluorocarbon refrigerants, Journal of Electronic Packaging, 134 (2012) 1-9.
[5] X. Zhang, D. Hu, Performance analysis of the single-stage absorption heat transformer using a new working pair composed of ionic liquid and water, Applied Thermal Engineering 37 (2012) 129-135.
[6] X. D. Zhang, D. Hu, Performance simulation of the absorption chiller using water and ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate as the working pair, Applied Thermal Engineering, No. 31, pp. 3316-3321, 2011.
[7] S.Q. Liang, J. Zhao, L. Wang, X. L. Huai, Absorption refrigeration cycle utilizing a new working pair of ionic liquid type, Journal of Engineering Thermophysics, No. 31, pp. 1627-1630, 2010.
[8] Y. J. Kim, S. Kim, Y. K. Joshi, A. G. Fedorov, P. A. Kohl, Waste-heat driven miniature absorption refrigeration system using ionic-liquid as a working fluid, In Proceedings of the ASME5th International Conference on Energy Sustainability, Washington, DC, USA, 1299-1305, 2011.
[9] Y. J. Kim, S. Kim, Y. K. Joshi, A. G. Fedorovc, P. A. Kohl, Thermodynamic analysis of an absorption refrigeration system with ionic-liquid/refrigerant mixture as aworking fluid, Energy, No. 44, pp. 1005-1016, 2012.
[10] G. Zuo, Z. Zhao, S. Yan, X. Zhang, Thermodynamic properties of a new working pair: 1-ethyl-3-methylimidazolium ethylsulfate and water. Chemical Engineering Journal, No. 156, pp. 613-617, 2010.
[11] A. Yokozeki, M. B. Shiflett, Water solubility in ionic liquids and application to absorption cycles, Industrial & Engineering Chemistry Research, No. 49, pp. 9496-9503, 2010.
[12] L. E. Ficke, H. Rodriguez, J. F. Brennecke. Heat Capacities and Excess Enthalpies of 1-Ethyl-3-methylimidazolium-Based Ionic Liquids and Water. Journal of  Chemical Engineering,. No. 53, pp. 2112-2119, 2008.
[13] E. S. Abumandour, F.  Mutelet, Performance of an absorption heat transformer using new working binary systems composed of ionic liquid and water, Applied Thermal Engineering, No. 94, pp. 579-589, 2016.
[14] Y. J. Kim, M. Gonzalez, Exergy Analysis of an Absorption Refrigeration System Using an Iconic Liquid as a Working Fluid in the Chemical Compressor, International Refrigeration and Air Conditioning Conference,  Purdue, July, 16-19, 2012.
[15] Chen, W., Liang, S., 2016. Thermodynamic analysis of absorption heat transformers using [mmim] DMP/H2O and [mmim]DMP/CH3OH as working fluids. Applied Thermal Engineering 99, 846-856.
[16] A. Yokozeki, M. B. Shiflett, Vapor-liquid equilibria of ammonia + ionic liquid mixtures, Applied Energy, No. 84, pp. 1258-1273, 2007.
[17] A. Yokozeki, Theoretical performances of various refrigerantabsorbent pairs in a vapor-absorption refrigeration cycle by the use of equations of state, Applied Energy, No. 80, pp. 383-399, 2005.
[18] Chen, W., Bai, Y., 2016. Thermal performance of an absorption-refrigeration system with [emim] Cu2Cl5/NH3 as working fluid. Energy 112, 332-341.
[19] I. Sujatha, G.Venkatarathnam, Performance of a vapour absorption heat transformer operating with ionic liquids and ammonia, , Energy, Volume 141, 15 December 2017, Pages 924-936.
[20] Wei Wu , Tian You , Haiyang Zhang , Xianting Li , Comparisons of Different Ionic Liquids Combined with Trans-1,3,3,3-tetraßuoropropene (R1234ze(E)) as Absorption Working Fluids, International Journal of Refrigeration (2017), doi: 10.1016/j.ijrefrig.2017.12.011.
[21] R.D. Misra, P.K. Sahoo, S. Sahoo, A. Gupta, Thermoeconomic optimization of a single effect water/LiBr vapour absorption refrigeration system, International Journal of Refrigeration, 26 (2003) 158–169.
[22] R.D. Misra, P.K. Sahoob, A. Guptab, Thermoeconomic evaluation and optimization of a double-effect H2O/LiBr vapour-absorption refrigeration system, International Journal of Refrigeration, 28 (2005) 331–343.
[23] M.Mishra, P.K. Das, S. Sarangi, Optimum Design of Cross flow Plate-Fin Heat Exchangers through Genetic Algorithm, International Journal of Heat Exchangers, 5 (2004) 379-402.
[24] S. Liang, W. Chen, Y. Guo and D. Tang, Ionic Liquids Facilitate the Development of Absorption Refrigeration Additional information is available at the end of the chapter, http://dx.doi.org/10.5772/58982.
[25] B. Bakhtiari, L. Fradette, R. Legros, J. Paris, A model for analysis and design of H2O–LiBr absorption heat pumps, Energy Convers Manage, No. 52, pp. 1439-1448, 2011.
[26] L. Hoffmann, I. Greiter, A. Wagner, V. Weiss, G. Alefeld, Experimental investigation of heat transfer in a horizontal tube falling film absorber with aqueous solutions of LiBr with and without surfactants, Int J Refrig, No. 19, pp. 331-341, 1996.
[27] R. Gomri, Second law comparison of single effect and double effect vapour absorption refrigeration systems, Energy Conversion and Management 50 (2009) 1279–1287
[28] H. Renon, J. M. Prausnitz, Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures, AIChE Journal, 1968;14:135-144. No. 14, pp. 135-144, 1968.
[29] M. B. Shiflett, A. Yokozeki, Solubility and diffusivity of hydrofluorocarbons in room-temperature ionic liquids, AIChE Journal, No. 52, pp. 1205-1219, 2009.
[30] L. D. Simoni, L. E. Ficke, C. A. Lambert, M. A. Stadtherr, J. F. Brennecke, Measurement and Prediction of Vapor-Liquid Equilibrium of Aqueous 1-Ethyl-3-methylimidazolium-Based Ionic Liquid Systems, Ind. Eng. Chem. Res, No. 49, pp. 3893-3901, 2010.
[31] Y. Kaita, Thermodnamic properties of lithium bromide – water solutions at high temperatures, International Journal Refrigeration, No. 24, pp. 374-390, 2001.
[32] H. Rodriguez, J. F. Brennecke, Temperature and Composition Dependence of the Density and Viscosity of Binary Mixtures of Water + Ionic Liquid, Journal of Chemical Engineering, No. 51, pp. 2145-2155, 206.
[33] C. M. Tenney, M. Massel, J. M. Mayes, M. Sen, J. F. Brennecke, E. J. Maginn, A Computational and Experimental Study of the Heat Transfer Properties of Nine Different Ionic Liquids, Journal of Chemical & Engineering Data, No. 59, pp. 391-399, 2014.
[34] A. Bejan, G. Tsatsaronis, M. Moran, Thermal design and optimization. New York, John Wiley and Sons Inc, 1996.
[35]  G. Florides, S. Kalogirou, S. Tassou, L. Wrobel, Design and construction of a LiBr–water absorption machine, Energy Convers Manage, No. 15, pp. 2483-2508, 2003.
[36] A. Bagherinejad, M. Yaghoubi, Exergoeconomic analysis and optimization of an Integrated Solar Combined Cycle System (ISCCS) using genetic algorithm, Energy Conversion and Management, No. 52, pp. 193-2203, 2011.
[37] J. H. Holland, Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press, 1975.
[38] G. Renner, A. Ekart, Genetic algorithms in computer aided design, Comput. Aided Design, 35 (2003) 709–726.
[39] N. Srinivas, K. Deb, Multiobjective optimization using non-dominated sorting in genetic algorithms, Evolutionary Comput, 2 (1994) 221–248.
[40] K. Deb, A. Pratap, S. Agarwal, T. Meyariva, A fast and elitist multi-objective Genetic Algorithm: NSGA-II. IEEE Trans. Evol. Comput, 6 (2002) 182–197.
[41] V. Gnielinski, New equations for heat and mass transfer in turbulent pipe and channel flow, Int Chem Eng, No. 16, pp. 359-367, 1976.
[42] T. Bergman, F. Incropera, Fundamentals of heat and mass transfer, Hoboken (NJ), Wiley, 2011.
[43] J. Holman, Heat transfer, New York, McGraw-Hill, 2002.
[44] V. patnaik, H. P. Blanco, W. A. Ryan, Asimple analytical model for the design of vertical tube absorbers, ASHRAE Trans, pp. 69-80, 1993.