[1] Najafizadeh M. M., Eslami M. R., ”Thermoplastic Stability of orthotropic circular plates”, Journal of Thermal Stresses Vol. 25, No.10, pp. 985- 1005, 2002.
[2] Najafizadeh M. M., Heydari H. R., ”Thermal buckling of functionally graded circular plates based on higher order shear deformation plate theory”, European Journal of Mechanics A/Solid, Vol. 23, No. No. 6, pp. 1085- 1100, 2004.
[3] Ma L. S. Wang T. J. ”Nonlinear bending and post buckling of a functionally graded circular plate under mechanical and thermal loading”. International Journal of Solid and Structures; Vol. 40, pp.3311–30, 2003.
[4] Pandey M. D., Sherbourne A. N. ”Buckling of anisotropic composite plates under stress gradient”. Journal of Engineering Mechanics; Vol. 117, No. 2, pp. 260–75, 1991.
[5] Najafizadeh, M. M., and H. R. Heydari. "An exact solution for buckling of functionally graded circular plates based on higher order shear deformation plate theory under uniform radial compression." International Journal of Mechanical Sciences; Vol. 50, No. 3, pp. 603-612, 2008.
[6] Reddy J . N., Wang C . M., Kitopornchi S. ”Axsiymmetric bending of functionally graded circular and annular plates”. European Journal of Mechanics A/Solids, Vol. 18, pp. 185–99, 1999.
[7] Fukui Y. ”Fundamental investigation of functionally gradient material manufacturing system using centrifugal force”. Japan Society Mechanical Engineering International Journal Series III, Vol. 34, No. No. 1, pp. 144–8, 1991.
[8] Reddy J. N., Khdeir A. A., ”Buckling and vibration of laminated composite plate using various plate theories”. AIAA Journal, Vol. 27, No. 12 , pp. 1808–17, 1989.
[9] Nan C. W., Yuan R. Z., Zhang L. M., ”The physics of metal/ ceramic functionally gradient materials”. Ceramic Transactions Functionally Gradient Materials, Vol. 34, pp. 75–82, 1993.
[10] Klosner J. M., Forry M. J., ”Buckling of simply supported plates under arbitrary symmetrical temperature distributions” Journal of the Aerospace Sciences; Vol. 25, pp. 181–4, 1958.
[11] Krizevsky G., Stavsky Y. ”Refined theory for vibrations and buckling of laminated isotropic annular plates” International Journal of Mechanical Sciences, Vol. 38, No. 5, pp. 539–55, 1996.
[12] Chang J. S., Leu S. Y. ”Thermal buckling analysis of antisymmetric angleply laminates based on a higher order displacement field” Composites Science and Technology, Vol. 41, No. 2, pp. 109–208, 1991.
[13] Suresh S., Mortensen A. ”Fundamentals of functionally graded materials”, Barnes and Noble Publications; 1998.
[14] Najafizadeh M. M., Malmorad M., Sharifi A., Thermal Buckling Analysis of a FGM Circular Plate with Actuator-Actuator Piezoelectric Layers, Based on Neutral-Axis’ Position and Using First-Order Shear Deformation Plate Theory, Journal of Solid Mechanic Engineering, Vol. 15, No. 1, pp. 19-33, 2009 (In Persian).