[1] Ahmadi P., Dincer I., Rosen M. a., Development andassessment of an integrated biomass-based multi-generation energy system, Energy, Vol. 56, pp. 155–166, 2013.
[2] Gholamian E., Mahmoudi S. M. S., Zare V., Proposal, exergy analysis and optimization of a new biomass-based cogeneration system, Applied Thermal Engineering, Vol. 93, pp. 223-235, 2016.
[3] Soltani S., S. Mahmoudi M. S., Yari M., Morosuk T., M. a. Rosen, Zare V., A comparative exergoeconomic analysis of two biomass and co-firing combined power plants,
Energy Conversion and Management, Vol. 76, pp. 83–91, 2013.
[4] Datta A., Ganguly R., Sarkar L., Energy and exergy analyses of an externally fired gas turbine (EFGT) cycle integrated with biomass gasifier for distributed power generation, Energy, Vol. 35, No. 1, pp. 341–350, 2010.
[5] Soltani S., Mahmoudi S. M. S., Yari M., Rosen M. a., Thermodynamic analyses of a biomass integrated fired combined cycle,
Applied Thermal Engineering, Vol. 59, no. 1–2, pp. 60–68, 2013.
[6] Handbook F. C., EG&G technical services,Albuquerque, Inc., NM, DOE/NETL-2004/1206, 2004.
[7] Singh D., Hern E., Hutton P. N., Pate N. l, Mann M. D., Carbon deposition in an SOFC fueled by tar-laden biomass gas : a thermodynamic analysis,
Journal of Power Sources, Vol. 142, No. 1-2, pp. 194–199, 2005.
[8] Athanasiou C., Coutelieris F., Vakouftsi E., Skoulou V., E. Antonakou, From biomass to electricity through integrated gasification / SOFC system-optimization and energy balance,
International Journal of Hydrogen Energy, Vol. 32, No. 3, pp. 337–342, 2007.
[9] Colpan C. O., Dincer, Hamdullahpur F., Thermodynamic modeling of direct internal reforming solid oxide fuel cells operating with syngas,
International Journal of Hydrogen Energy, Vol. 32, No. 7, pp. 787–795, 2007.
[10] Jang H., Ocon J. D., Lee S., Lee J. K., Lee J., Direct power generation from waste coffee grounds in a biomass fuel cell, Journal of Power Sources, Vol. 296, pp. 433–439, 2015.
[12] Jia J., Abudula A., Wei L., Sun B., Shi Y., Thermodynamic modeling of an integrated biomass gasi fi cation and solid oxide fuel cell system,
Renewable Energy, Vol. 81, pp. 400–410, 2015.
[13] Kartha S. , Kreutz T. G., Williams R. H., Small-scale biomass fuel cell/gas turbine power systems for rural areas, Energy for Sustainable Development, ol. 4, no. 1, pp. 85–89, 2000.
[15] Gomri R., Investigation of the potential of application of single effect and multiple effect absorption cooling systems,
Energy Conversion and Management, Vol. 51, no. 8, pp. 1629–1636, 2010.
[16] Gomri R., Second law comparison of single effect and double effect vapour absorption refrigeration systems,
Energy Conversion and Management, Vol. 50, no. 5, pp. 1279–1287, 2009
[17] Wellinger A., Murphy J. D., Baxter D., The biogas handbook: science, production and applications, Elsevier, 2013.
[18] Al-sulaiman F. A., Dincer I., Hamdullahpur F.Energy and exergy analyses of a biomass trigeneration system using an organic Rankine cycle, Energy, Vol. 45, no. 1, pp. 975–985, 2012.
[19] Mehr A. S., Mahmoudi S. M. S., Yari M., Chitsaz a., Thermodynamic and exergoeconomic analysis of biogas fed solid oxide fuel cell power plants emphasizing on anode and cathode recycling: A comparative study,
Energy Conversion and Management, Vol. 105, pp. 596–606, 2015.
[20] Al-sulaiman F. A., Dincer I., Hamdullahpur F., Energy analysis of a trigeneration plant based on solid oxide fuel cell and organic Rankine cycle,
International Journal of Hydrogen Energy, Vol. 35, no. 10, pp. 5104–5113, 2010.
[21] Zainal Z. A., Ali R., Lean C. H., Seetharamu K. N., Prediction of performance of a downdraft gasifier using equilibrium modeling for different biomass materials,
Energy Conversion and Management, Vol. 42, no. 12, pp. 1499–1515, 2001.
[22] Ranjbar F., Chitsaz A., Mahmoudi S. M. S., Khalilarya S., Rosen M. a., Energy and exergy assessments of a novel trigeneration system based on a solid oxide fuel cell,
Energy Conversion and Management, Vol. 87, pp. 318–327, 2014.
[23] Chan S. H., Ho H. K., Tian Y., Modelling of simple hybrid solid oxide fuel cell and gas turbine power plant, Journal of Power Sources, Vol. 109, no. 1, pp. 111–120, 2002.
[24] Ptasinski K. J., Prins M. J., Pierik A., Exergetic evaluation of biomass gasification”, Energy, Vol. 32, no. 4, pp. 568–574, 2007.
[25] Soltani S., Mahmoudi S. M. S., Yari M., Rosen M. a., Thermodynamic analyses of an externally fired gas turbine combined cycle integrated with a biomass gasification plant,
Energy Conversion and Management, Vol. 70, pp. 107–115, Jun. 2013.
[26] Bejan A., Moran M. J. ,Thermal design and optimization, John Wiley & Sons, 1996.
[27] Landau L., Moran M. J., Shapiro H. N., Boettner D. D., M. Bailey, Fundamentals of engineering thermodynamics, John Wiley & Sons, 2010.
[28] Tsatsaronis G, Lin L, Pisa J. Exergy costing in exergoeconomics. J Energy Resour Technol 1993;115:9–16.
[29] Zare V, Mahmoudi SMS, Yari M. On the exergoeconomic assessment of employing Kalina cycle for GT-MHR waste heat utilization.EnergyConversManag2015;90:364–74. doi:10.1016/j.enconman.2014.11.039.