[1] Alguacil M., Prieto C., Rodriguez A., Lohr, J., Direct steam generation in parabolic trough collectors. Energy Procedia, Vol. 49, pp. 21-29, 2014.
[2] Laing D., Bahl C., Bauer T., Lehmann D., Steinmann, W. D., Thermal energy storage for direct steam generation. Solar Energy, Vol. 85, No.4, pp. 627-633, 2011.
[3] Seitz M., Cetin P., Eck M., Thermal storage concept for solar thermal power plants with direct steam generation. Energy Procedia, Vol. 49, pp. 993-1002, 2014.
[4] Feldhoff J. F., Schmitz K., Eck M., Schnatbaum-Laumann L., Laing D., Ortiz-Vives F., Schulte-Fischedick J., Comparative system analysis of direct steam generation and synthetic oil parabolic trough power plants with integrated thermal storage. Solar Energy, Vol. 86, No.1, pp. 520-530, 2012.
[5]زمانیمحیآبادی م., صفوی س.، نقوی س,، محمدی س.، بررسی عملکلرد چرخه روغن نیروگاه سهموی خورشیدی شیراز بخش اول: مدلسازی و مانیتورینگ. مجلۀ مهندسی مکانیک دانشگاه تبریز، د. 45، ش. 1, ص 61-67، 1395.
[6] نامی ح.، رنجبر س.، تحلیل انرژی و اگزرژی چرخه ی اوکسی فیول S-GRAZ. مجلۀ مهندسی مکانیک دانشگاه تبریز، د. 46، ش.1، ص 101-107، 1395.
[7] Pirasaci T., Goswami D. Y., Influence of design on performance of a latent heat storage system for a direct steam generation power plant. Applied Energy, Vol. 162, pp. 644 -652, 2016.
[8] Michels H., Hahne E., Cascaded latent heat storage for solar thermal power stations. In EuroSun’96, Proc. of 10th Int. Solar Forum, 1996.
[9] Michels H., Pitz-Paal R., Cascaded latent heat storage for parabolic trough solar power plants. Solar Energy, Vol. 81, No.6, pp. 829-837, 2007.
[10] Aldoss T. K., Rahman M. M., Comparison between the single-PCM and multi-PCM thermal energy storage design. Energy Conversion and Management, Vol. 83, pp. 79-87, 2014.
[11] Farid M. M., Kanzawa A., Thermal performance of a heat storage module using PCM’s with different melting temperatures: mathematical modeling. Journal of Solar Energy Engineering, Vol. 111, No.2, pp. 152-157, 1989.
[12] Farid M. M., Kim Y., Kansawa A., Thermal performance of a heat storage module using PCM’s with different melting temperature: experimental. Journal of Solar Energy Engineering, Vol. 112, No.2, pp. 125-131, 1990.
[13] Ezra M., Kozak Y., Dubovsky V., Ziskind G., Analysis and optimization of melting temperature span for a multiple-PCM latent heat thermal energy storage unit. Applied Thermal Engineering, Vol. 93, pp. 315-329, 2016.
[14] Xiao X., Zhang P., Li M., Experimental and numerical study of heat transfer performance of nitrate/expanded graphite composite PCM for solar energy storage. Energy Conversion and Management, Vol. 105, pp. 272-284, 2015.
[15] Kibria M. A., Anisur M. R., Mahfuz M. H., Saidur R., Metselaar I. H. S. C., Numerical and experimental investigation of heat transfer in a shell and tube thermal energy storage system. International Communications in Heat and Mass Transfer, Vol. 53, pp. 71-78, 2014.
[16] Xu, Y., He, Y. L., Li, Y. Q., Song, H. J., Exergy analysis and optimization of charging–discharging processes of latent heat thermal energy storage system with three phase change materials. Solar Energy, Vol. 123, pp. 206-216, 2016.
[17] Jegadheeswaran, S., Pohekar, S. D., Kousksou, T., Exergy based performance evaluation of latent heat thermal storage system: a review. Renewable and Sustainable Energy Reviews, Vol. 14, No.9, 2580-2595, 2010.