[1] Sanaye S. and Hajabdollahi H., Multi-objective optimization of shell and tube heat exchangers, Applied Thermal Engineering, Vol. 30, pp. 1937-1945, 2010.
[2] Costa L.H. and Queiroz M., Design optimization of shell-and-tube heat exchangers. Applied Thermal Engineering, Vol. 28, pp. 1798-1805, 2008.
[3] Ramananda Rao K., Shrinivasa U. and Srinivasan J., Synthesis of cost optimal shelland- tube heat exchangers. Heat Transfer Engineering Vol. 12, No. 3, pp. 47-55, 1991.
[4] Fesanghary M., Damangir E. and Soleimani I., Design optimization of shell and tube heat exchangers using global sensitivity analysis and harmony search algorithm. Applied Thermal Engineering , Vol. 29, pp. 1026-1031, 2009.
[5] Ponce-Ortega J.M., Serna-Gonzalez M., Salcedo-Estrada L.I. and Jimenez- Gutierrez A., Minimum-investment design of multiple shell and tube heat exchangers using a MINLP formulation. Chemical Engineering Research and Design Part A (October 2006).
[6] Ponce-Ortega J.M., Serna-Gonzalez M. and Jimenez-Gutierrez A., Use of genetic algorithms for the optimal design of shell-and-tube heat exchangers. Applied Thermal Engineering , Vol. 29, pp. 203-209, 2009.
[7] Ravagnani M.A.S.S., and Caballero J.A., Optimal heat exchanger network synthesis with the detailed heat transfer equipment design. Computers and Chemical Engineering Vol. 31, pp. 1432-1448, 2007.
[8] Caputo A.C., Pelagagge P.M. and Salini P., Heat exchanger design based on economic optimization. Applied Thermal Engineering, Vol. 28, pp. 1151-1159, 2008.
[9] Özçelik Y., Exergetic optimization of shell and tube heat exchangers using a genetic based algorithm. Applied Thermal Engineering , Vol. 27, pp. 1849-1856, 2007.
[10] Bejan A., Tsatsaronis G. and Moran M., Thermal design and optimization. Wiley Interscience, 1995.
[11] Johannessen E., Nummedal L. and Kjelstrup S., Minimizing the entropy production in heat exchange. International Journal of Heat and Mass Transfer , Vol. 45, pp. 2649-2654, 2002.
[12] S. Sun, Y. Lu and C. Yan. Optimization in calculation of shell-and-tube heat exchanger. International Communication in Heat and Mass Transfer Vol. 20 pp. 675-685, 1993.
[13] Agarwal A., and Gupta S.K., Jumping gene adaptations of NSGA-II and their use in the multi-objective optimal design of shell and tube heat exchangers. Chemical Engineering Research and Design , Vol. 86, pp. 123-139, 2008.
[14] Hilbert R., Janiga G., Baron R. and Thevenin D., Multi-objective shape optimization of a heat exchanger using parallel genetic algorithms. International Journal of Heat and Mass Transfer Vol. 49, pp. 2567-2577, 2006.
[15] Liu Z. and Cheng H., Multi-objective optimization design analysis of primary surface recuperator for microturbines. Applied Thermal Engineering Vol. 28 pp. 601-610, 2008.
[16] Tian Z., Ma L., Gu B., Yang L., Liu F., Numerical model of a parallel flow minichannel evaporator with new flow boiling heat transfer correlation. International Journal of Refrigeration Vol . 35 pp. 135-144, 2015.
[17] Huang L., Aute V., Radermacher R., A model for air-to-refrigerant microchannel condensers with variable tube and fin geometries. International Journal of Refrigeration. Vol. 40, pp. 269-281, 2014.
[18] Tian Z., Gu B., Yang L., Liu F., Performance prediction for a parallel flow condenser based on artificial neural network, Applied Thermal Engineering, Vol. 63, pp. 459- 467, 2014.
[19] Rao R., Patel V., Thermodynamic optimization of cross flow plate-fin heat exchanger using a particle swarm optimization algorithm, International Journal of Thermal Sciences, vol. 49, pp. 1712-1721, 2010.
[20] Fabbri G., A genetic algorithm for fin profile optimization. International Journal of Heat and Mass Transfer. Vol. 40, pp. 2165-2172, 1997.
[21] Kobus C.J., Cavanaugh R.B., A theoretical investigation into the optimal longitudinal profile of a horizontal pin fin of least material under the influence of pure forced and pure natural convection with a diameter-variable convective heat transfer coefficient, ASME Journal of Heat Transfer , Vol. 128, 2006.
[22] Deb K., Agrawal S., Pratap A. and Meyarivan T., A fast and elitist multi-objective genetic algorithm: NSGA-II”. IEEE Trans Evolutionary Computation, Vol. 6, pp. 182-197, 2002.
[23] Safikhani H., Akhavan-Behabadi M. A., Nariman-Zadeh N. and Mahmoodabadi M. J., Modeling and multi-objective optimization of square cyclones using CFD and neural networks, Chemical Engineering Research and Design, Vol. 89, pp. 301–309, 2011.
[24] Safikhani H., A. Hajiloo and M. A. Ranjbar. Modeling and multi-objective optimization of cyclone separators using CFD and genetic algorithms, Computers and Chemical Engineering, Vol. 35, pp. 1064–1071, 2011.
[25] Safikhani H., Abbassi A., Khalkhali A. and Kalteh M., Multi-objective optimization of nanofluid flow in flat tubes using CFD, artificial neural networks and genetic algorithms, Advanced Powder Technology, Vol. 25, pp. 1608–1617, 2014.