[1] Kang Y., Kunugi Y., Kashiwagi T., Review of advanced absorption cycles: performance improvement and temperature lift enhancement, International journal of refrigeration, Vol. 23, No. 5, pp. 388-401, 2000.
[2] Foley G., DeVault R., Sweetser R., The future of absorption technology in America: a critical look at the impact of BCHP and innovation, in Proceeding of. 2000
[3] Patek J., Klomfar J., A computationally effective formulation of the thermodynamic properties of LiBr–H2O solutions from 273 to 500 K over full composition range, International Journal of Refrigeration, Vol. 29, No. 4, pp. 566-578, 2006.
[4] Wang J., Dai Y., Zhang T., Ma S., Parametric analysis for a new combined power and ejector–absorption refrigeration cycle, Energy, Vol. 34, No. 10, pp. 1587-1593, 2009.
[5] Chunnanond K., Aphornratana S., Ejectors: applications in refrigeration technology, Renewable and sustainable energy reviews, Vol. 8, No. 2, pp. 129-155, 2004.
[6] Pilatowsky I., Rivera W., Romero R., Thermodynamic analysis of monomethylamine–water solutions in a single-stage solar absorption refrigeration cycle at low generator temperatures, Solar energy materials and solar cells, Vol. 70, No. 3, pp. 287-300, 2001.
[7] Munday J. T., Bagster D. F., A new ejector theory applied to steam jet refrigeration, Industrial & Engineering Chemistry Process Design and Development, Vol. 16, No. 4, pp. 442-449, 1977.
[8] Chen L.-T., A new ejector-absorber cycle to improve the COP of an absorption refrigeration system, Applied energy, Vol. 30, No. 1, pp. 37-51, 1988.
[9] Sun D.-W., Eames I. W., Aphornratana S., Evaluation of a novel combined ejector-absorption refrigeration cycle—I: computer simulation, International Journal of Refrigeration, Vol. 19, No. 3, pp. 172-180, 1996.
[10] Alexis G., Thermodynamic analysis of ejector–absorption refrigeration cycle using the second thermodynamic law, International Journal of Exergy, Vol. 14, No. 2, pp. 179-190, 2014.
[11] Jiang L., Gu Z., Feng X., Li Y., Thermo-economical analysis between new absorption–ejector hybrid refrigeration system and small double-effect absorption system, Applied Thermal Engineering, Vol. 22, No. 9, pp. 1027-1036, 2002.
[12] Prasad M., Refrigeration and air conditioning: New Age International, 2011.
[13] Aly N. H., Karameldin A., Shamloul M., Modelling and simulation of steam jet ejectors, desalination, Vol. 123, No. 1, pp. 1-8, 1999.
[14] Şencan A., Yakut K. A., Kalogirou S. A., Exergy analysis of lithium bromide/water absorption systems, Renewable energy, Vol. 30, No. 5, pp. 645-657, 2005.
[15] Chou S., Yang P., Yap C., Maximum mass flow ratio due to secondary flow choking in an ejector refrigeration system, International journal of refrigeration, Vol. 24, No. 6, pp. 486-499, 2001.
[16] Rogdakis E., Alexis G., Investigation of ejector design at optimum operating condition, Energy Conversion and Management, Vol. 41, No. 17, pp. 1841-1849, 2000.
[17] Kotas T. J., The exergy method of thermal plant analysis: Elsevier, 2013.
[18] Garousi Farshi L., Mosaffa A. H., Infante Ferreira C. A., Rosen M. A., Thermodynamic analysis and comparison of combined ejector–absorption and single effect absorption refrigeration systems, Applied Energy, Vol. 133, pp. 335-346, 2014.
[19] Muñoz A. I., Antón J. G., Guiñón J. L., Herranz V. P., Effects of solution temperature on localized corrosion of high nickel content stainless steels and nickel in chromated LiBr solution, Corrosion Science, Vol. 48, No. 10, pp. 3349-3374, 2006.
[20] Tanno K., Itoh M., Sekiya H., Yashiro H., Kumagai N., The corrosion inhibition of carbon steel in lithium bromide solution by hydroxide and molybdate at moderate temperatures, Corrosion Science, Vol. 34, No. 9, pp. 1453-1461, 1993.
[21] Sarmiento E., González-Rodriguez J. G., Uruchurtu J., A study of the corrosion inhibition of carbon steel in a bromide solution using fractal analysis, Surface and Coatings Technology, Vol. 203, No. 1–2, pp. 46-51, 2008.
[22] Tanno K., Itoh M., Takahashi T., Yashiro H., Kumagai N., The corrosion of carbon steel in lithium bromide solution at moderate temperatures, Corrosion Science, Vol. 34, No. 9, pp. 1441-1451, 1993.
[23] Hu X.-q., Liang C.-h., Huang N.-b., Anticorrosion Performance of Carbon Steel in 55% LiBr Solution Containing PMA/SbBr3 Inhibitor, Journal of Iron and Steel Research, International, Vol. 13, No. 4, pp. 56-60, 2006.
[24] Leiva-García R., Muñoz-Portero M. J., García-Antón J., Corrosion behaviour of sensitized and unsensitized Alloy 900 (UNS 1.4462) in concentrated aqueous lithium bromide solutions at different temperatures, Corrosion Science, Vol. 52, No. 3, pp. 950-959, 2010.
[25] Igual Muñoz A., García Antón J., López Nuévalos S., Guiñón J. L., Pérez Herranz V., Corrosion studies of austenitic and duplex stainless steels in aqueous lithium bromide solution at different temperatures, Corrosion Science, Vol. 46, No. 12, pp. 2955-2974, 2004.
[26] Castrellon-Uribe J., Cuevas-Arteaga C., Trujillo-Estrada A., Corrosion monitoring of stainless steel 304L in lithium bromide aqueous solution using transmittance optical detection technique, Optics and Lasers in Engineering, Vol. 46, No. 6, pp. 469-476, 2008.
[27] Wang K., Abdelaziz O., Kisari P., Vineyard E. A., State-of-the-art review on crystallization control technologies for water/LiBr absorption heat pumps, International Journal of Refrigeration, Vol. 34, No. 6, pp. 1325-1337, 2011.
[28] Sun J., Fu L., Zhang S., Experimental study of large temperature lift heat pump (LTLHP) in CHP system, Energy and Buildings, Vol. 149, pp. 73-82, 2017.
[29] Nasser A. E., Osman T. R., Simple LiBr/Water absorption cycle limitations, Applied Energy, Vol. 17, No. 4, pp. 251-262, 1984.
[30] Zhang X., Hu D., Performance analysis of the single-stage absorption heat transformer using a new working pair composed of ionic liquid and water, Applied Thermal Engineering, Vol. 37, pp. 129-135, 2012.
[31] Shi Y.-J., Wells K. M., Pye P. J., Choi W.-B., Churchill H. R. O., Lynch J. E., Maliakal A., Sager J. W., Rossen K., Volante R. P., Reider P. J., Crystallization-induced asymmetric transformation: Stereospecific synthesis of L-768,673, Tetrahedron, Vol. 55, No. 4, pp. 909-918, 1999.
[32] Ring T. A., Dirksen J. A., Duvall K. N., Jongen N., LiBr · 2H2O Crystallization Inhibition in the Presence of Additives, Journal of Colloid and Interface Science, Vol. 239, No. 2, pp. 399-408, 2001.
[33] Garousi Farshi L., Seyed Mahmoudi S. M., Rosen M. A., Analysis of crystallization risk in double effect absorption refrigeration systems, Applied Thermal Engineering, Vol. 31, No. 10, pp. 1712-1717, 2011.
[34] Liao X., Radermacher R., Absorption chiller crystallization control strategies for integrated cooling heating and power systems, International Journal of Refrigeration, Vol. 30, No. 5, pp. 904-911, 2007.
[35] Gilani S. I.-u.-H., Ahmed M. S. M. S., Solution Crystallization Detection for Double-effect LiBr-H2O Steam Absorption Chiller, Energy Procedia, Vol. 75, pp. 1522-1528, 2015.
[36] Dirksen J. A., Ring T. A., Duvall K. N., Jongen N., Testing of crystallization inhibitors in industrial LiBr solutions, International Journal of Refrigeration, Vol. 24, No. 8, pp. 856-859, 2001.