شبیه سازی جریان اطراف توربین باد محور افقی با سرعت های دورانی متفاوت به روش شبیه سازی گردابه های بزرگ

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی مکانیک، دانشگاه سیستان و بلوچستان، زاهدان، ایران

2 استادیار، گروه مهندسی مکانیک، دانشگاه بزرگمهر قائنات، قاین، ایران

چکیده

در کار حاضر تمرکز بر جریان اطراف یک توربین باد محور افقی است.از شبیه­سازی گردابه­های بزرگ به منظور  مطالعه سرعت­های دورانی مختلف استفاده شده است. تانسور تنش پسماند غیر ایزوتروپیک با استفاده از مدل زیر شبکه اسماگورینسکی به دست می­آید. مطالعه حاضر با نسبت سرعت نوک پره 3، 6 و 10 بررسی شده است. نتایج کار حاضر با نتایج تجربی گزارش شده در کارهای گذشته تطابق خوبی دارد. گسترش دنباله در امتداد خط افقی گذرنده از مرکز تونل باد در فواصل مختلف برای تمامی سرعت­های دورانی نشان می­دهد که با افزایش فاصله پایین­دست، سرعت در راستای جریان افزایش می­یابد. همچنین افزایش سرعت دورانی باعث افزایشافت سرعت پس از توربین باد می­گردد،ولی در این حالت دنباله سریع­تر بازیابی می­شود.در مقطع عرضی تونل باد در محل قرارگیری نوک پره­ها پس از توربین باد در سرعت دورانی 6 حداقل سرعت 54 درصد سرعت اولیه و حداکثر بازدهی آن در فاصله مورد بررسی 67 درصد سرعت اولیه می­باشد. در حالی­که برای سرعت دورانی 10 حداقل سرعت 26 درصد و حداکثر آن 68 درصد سرعت اولیه است.با افزایش سرعت دورانی میزان شدت آشفتگی افزایش و اثرات گردابه­های جدا شده از پره دیرتر از بین می­رود.در سرعت دورانی 3  اثرات گردابه­های جدا شده از پره دیده نمی­شود، بنابراین می­توان نتیجه گرفت اثرات گردابه­های جدا شده از پره با افزایش سرعت دورانی افزایش می­یابند.

کلیدواژه‌ها


[1] Li Y., Paik K. J., Xing T., CarricaP. M. Dynamic overset CFD simulations of wind turbine aerodynamics, renewable Energy, Vol. 52, No. 5, pp. 1219-1235, 2012.
[2] Zhang W., MarkfortC. D., Porte´-AgelF., Near-wake flow structure downwind of a wind turbine in a turbulent boundary layer,Experiments in Fluids,Vol. 52, No. 5, pp. 1219-1235, 2012.
[3]CrespoA., Hernandez J., FrandsenS., Survey of modeling methods for wind turbine wakes and wind farms, Wind Energy, Vol. 2, No. 1, pp. 1-24, 2012.
[4]Vermeer L.J., Sorensen J.N., CrespoA.; Wind turbine wake aerodynamics;Progress in Aerospace Sciences,Vol. 39, No. 6-7, pp. 467-510, 2003.
[5] Mo. JO., ChoudhryA., ArjomandiM., Kelso R., Lee Y. H.,Effects of wind speed changes on wake instability of a wind turbine in a virtual wind tunnel using large eddy simulation, Journal of Wind Engineering and Industrial Aerodynamic, Vol. 117, pp. 38-56, 2013.
[6]Porte, -AgelF., Wu Y. T., Lu H., ConzemiusR. J., Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 99, No. 4, pp. 154-168, 2011.
[7] Stevens R. J. A. M.,GaymeD. F., MeneveauC., Large eddy simulation studies of the effects of alignment and wind farm length, Journal of Renewable and Sustainable Energy, Vol. 6, No. 2, pp. 611-623, 2014.
[8] Li Y., Paik K. J., Xing T., Carrica P. M., Dynamic overset CFD simulations of wind turbine aerodynamics, renewable Energy Vol.37, No. 1, pp. 285-298, 2012.
[9] AubrunS., LoyerS., Hancock P.E., Hayden P.,Wind turbine wake properties: Comparison between a non-rotating simplified wind turbine model and a rotating model, J. Wind Eng. Ind. AerodynVol.120, No. 1, pp. 1-8, 2013.
[10] Hu H., Yang Z., and Sarkar P., Dynamic wind loads and wake characteristics of a wind turbine model in an atmospheric boundary layer wind, Exp. Fluids, Vol. 52, No. 5, pp. 1277–1294, 2012.
[11] Zhang W., Markfort C. D., and Porté-Agel F., Near-wake flow structure downwind of a wind turbine in a turbulent boundary layer,  Exp. Fluids, vol. 52, No. 5, pp. 1219–1235, 2012.
[12] Maeda T., Kamada Y., Murata J., Yonekura S., Ito T., Oawa A. and Kogaki T.,Wind Tunnel Study on Wind and Turbulence Intensity Profiles in Wind  Turbine Wake, Journal of Thermal Science Vol.20, No.2, pp.127-32, 2011
[13] Pope S., Turbulent flows, Cambridge University Press; 2000
[14] SmagorinskyJ., General circulation experiments with the primitive equations: I. The basic equations, Monthly Weather Review, Vol. 91, No. 3, pp. 99-164, 1963.
[15] GermanoM.,PiomelliU., MoinP., Cabot W. H., A dynamic subgrid scale eddy viscosity model, Physics of Fluids A: Fluid Dynamics, Vol. 3, No. 7, pp. 1760-1765, 1991.
[16] Lilly D. K., A proposed modification of the Germanosubgrid-scale closure method, Physics of Fluids A: Fluid Dynamics, Vol. 4, No. 3, pp. 633-635, 1992
[17] MeneveauC., Lund T. S., and Cabot W. H., A Lagrangian dynamicsubgrid-scale model of turbulence, Journalof Fluid Mechanics, Vol. 319, No. 1, pp. 353-385, 1996
[18] BardinaJ., FerzigerJ. H., andReynolds W. C., Improved subgrid models for large eddy simulation,13th Fluid and Plasma Dynamics Conference, Stanford Univ.; CA, United States, July 14-16, 1980
[19]Clark R. A., FerzigerJ. H. andReynolds W. C., Evaluation of subgrid- scale models using an accurately simulated turbulent flow,Journal of Fluid Mechanics, Vol. 91, No. 1, pp. 1-16, 1979
[20] KrogstadP. Å., Eriksen P. E., Blind test calculations of the performance and wake development for a model wind turbine, Renewable Energy, Vol. 50, No. C, pp. 325-333, 2013
[21]TanglerJ.L., Somers D. M., NREL airfoil families for HAWTs,Proceedings of the American Wind Energy Association Windpower Conference.Washington, National Renewable Energy Laboratory; January 1995.
[22] Somers D., Design and experimental results for the S825 Airfoil, Technical Report NREL/SR-500-36344, National Renewable Energy Laboratory, 1999.
[23]AlfredssonP. H., Dahlberg J. A., VermeulenP. E. J., A comparison between predicted and measured data from wind turbine wakes, Wind Engineering, Vol. 6, No. 3, pp. 149-155, 1982
[24] Medici D., AlfredssonP. H., Measurements on a wind turbine wake: 3D Effects and bluff body vortex shedding, Wing Energy, Vol. 9, No. 3, pp. 219-236, 2006
[25] SarmastS., Numerical study on instability and interaction of wind turbine wakes, in Mechanics, Stability, Transition and Control, PhD Thesis, KTH: Stockholm, 2013.
[26] Jeong, J., Hussain, F., On the identification of a vortex". Journal of Fluid Mechanics, Vol. 285, No. 1, pp. 69-94, 1995
[27] Perry A. E., Chong M. E., and Cantwell B. J., "A general classification of three-dimensional flow fields, Phys. Fluids A, Vol. 2, No. 5, pp. 765-777, 1990
[28] Hunt J. C. R., Wray A. A., and Moin P., Eddies, stream, and convergence zones in turbulent flows, report ctr-s88. Center for Turbulence Research, pages, pp. 193-208, 1988
[29] Zhou, J., Adrian R. J., Balachandar, S., and Kendall T. M., Mechanism for generating coherent packets of hairpin vortices in channel flow, Journal of Fluid Mechanics, Vol. 387, No. 1, pp. 353-396, 1999