مطالعه تاثیر استفاده از بازتابنده اشعه نزدیک به مادون قرمز و گردآورنده خورشیدی بر گرمایش گلخانه و ممانعت از ورود پرندگان و حشرات

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد گروه مهندسی مکانیک، دانشگاه محقق اردبیلی، اردبیل، ایران

2 دانشجوی دکتری مهندسی مکانیک، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

در گلخانه‌های خورشیدی ­و برای دفع گرمای غیر­ضروری از روش تهویه طبیعی و باز­کردن دریچه­های گلخانه استفاده می­شود. چنین فرآیندی باعث ورود آفات به گلخانه و خسارت­های جانبی می‌گردد. در کار پیش‌رو نوع جدیدی از گلخانه­های خورشیدی شبیه­سازی و ارایه شده­است که با استفاده از پوششی مخصوص بر­روی سقف گلخانه، از ورود اشعه نزدیک مادون قرمز به داخل گلخانه جلوگیری می­کند تا مانع گرم شدن غیر­ضروری گلخانه در فصول گرم سال شده و در نتیجه نیاز به بازکردن دریچه­ها و مشکل ورود آفات مرتفع شود. در این کار پوشش مورد استفاده بر­روی سقف استوانه­ای گلخانه طیف نزدیک مادون قرمزاز نور خورشید را باز­می­تاباند و انرژی بازتابی در گردآورنده­ی واقع در خط کانونی سقف متمرکز می­شود. گردآورنده کانونی حاوی آب و ماده تغییرفاز دهنده  است که ذخیره حرارت به میزان بالا و در فضایی کم را ممکن می­سازد. مقادیر بهینه برای کم­ترین شعاع گردآورنده در مقابل بیش­ترین حجم ماده تغییرفازدهنده و با­توجه به انرژی دریافتی در یک روز تابستانی محاسبه شده­است. مطالعات عددی بر­روی این طرح در سه هندسه صورت گرفته­ و نتایج به صورت کانتور­های دما و سرعت ارایه شده­است. هم­چنین مقدار انرژی ذخیره­شده در هر­سه هندسه و در چهار فصل سال محاسبه و با انرژی لازم برای گرمایش گلخانه مقایسه شده­است. نتایج نشان می­دهد که با استفاده از این سامانه انرژی ذخیره­شده تکافوی گرمای لازم برای گرمایش گلخانه را در طول سال می­کند در عین­حال­که راهکاری برای مقابله با نفوذ آفات به­شمار می­آید.

کلیدواژه‌ها


[1]  Mavrogianopoulos  G. N., Greenhouses. Athens Stamoulis, Athens, 2001.
[2]  Sonneveld P. J., Swinkels G. L. A. M., Bot G. P. A., and Flamand G., Feasibility study for combining cooling and high grade energy production in a solar greenhouse. Biosystems Engineering, Vol. 105, pp. 51–58, 2010.
[3]  Sonneveld P. J., Swinkels G. L. A. M., Campen J., Van Tuijl B. A. J., Janssen H. J. J., and Bot G. P. A., Performance results of a solar greenhouse combining electrical and thermal energy production. Biosystems Engineering,Vol. 106, pp. 48–57, 2010.
[4]  Sonneveld P. J., Swinkels G. L. A. M., Kempkes  F., Campen J., and Bot G. P. A., Greenhouse with an Integrated NIR Filter and a solar cooling system. Acta Horticulturae, Vol. 719, pp. 123–130, 2006.
[5]  Sonneveld P. J., Holterman H. J., Swinkels G. L. A. M., Van Tuijl B. A. J., and Bot G. P. A., Solar energy delivering greenhouse with an integrated NIR filter. Acta­Horticulturae, Vol. 801, pp. 703-710,  2008.
[6]  Sonneveld P. J., Swinkels G. L. A. M., and Bot G. P. A., Design of a solar greenhouse with energy delivery by the conversion of near infrared radiation — Part 1 optics and PV-cells. ActaHorticulturae, Vol. 807, pp. 47-53, 2009.
[7]  Shiina Y., and Inagaki T., Study on the efficiency of effective thermal conductivities on melting characteristics of latent heat storage capsules. Int. J. Heat Mass Transfer, Vol. 48, pp. 373-383, 2005.
[8]  Mehling H., and Cabeza L. F., Heat and cold storage with PCM: an up to date introduction into basics and applications, Illustrated Eddition. Springer, 2008.
[9]  Lane G. A., Encapsulation of heat of fusion storage materials. Proceedings of 2nd southeastern conference on application of solar energy, Newyork, 1976.
[10]   Lane G. A., Low temperature heat storage with phase change materials. Int. J. Ambient Energy, Vol. 1, pp. 155-168, 1980.
[11]   Ettouney H., El-Dessouky H., and Al-Ali A., Heat transfer during phase change of paraffin wax stored in spherical shells. ASME J. Solar Energy Engineering,  Vol. 127, pp. 357–365, 2005.
[12]   Grigiante M., Mottes F., Zardi D., and de Francheschi M., Experimental solar radiation measurements and their effectiveness in setting up a real- sky irradiance model. Renewable Energy, Vol. 36, pp. 1-8, 2011.
[13]   Banaeian N., Omid M., and Ahmadi H., Energy and Economic Analysis of Greenhouse Strawberry Production in Tehran Province of Iran. Energy Conversion and Management, Vol. 52, pp. 1020 – 1025, 2011.
[14]   Incropera F. P., and DeWitt D. P., Introduction to Heat Transfer. John Wiley & Sons, Inc., New York, 2006.
[15]   Elsherbiny S. M., and Ragab E. H., Laminar natural convection in inclined rectangular cavities with a localiaed heat source. Alexandria Engineering Journal, Vol. 52, pp. 249-257, 2013.
[16]   Oliveski R. D. C., Macagnan M. H., and Copetti J. B., Review Entropy generation and natural convection in rectangular cavities. Applied Thermal Engineering, Vol. 29, pp. 1417-1425, 2009.
[17]   Val Davis G. D., and Jones I. P., Natural convection in a square cavity: a comparison exercise. Int. J. Numeical Methods for Fluids, Vol. 3, PP. 227–248, 1993.