بررسی پارامترهای جریان خون ناشی از گرفتگی یک طرفه شریان کلیه و ناحیه شاخه شاخه ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد، دانشکده مهندسی مکانیک، دانشگاه تبریز، تبریز، ایران

2 استاد، دانشگاه علوم پزشکی تبریز، تبریز، ایران

3 مربی، گروه مهندسی مکانیک، موسسه آموزش عالی وحدت، تربت‌جام، ایران

چکیده

انسداد عروق کلیه یکی از مهم‌ترین عوامل مرگ‌ومیر و ایجاد عوارض دائمی در بدن می‌باشد. صلب شدن دیواره عروق از عوامل اصلی بیماری آتروسکلروسیز و به وجود آمدن گرفتگی­ها در عروق کلیه است. لذا در این پژوهش تلاش شد تا تأثیر سفت شدن دیواره شریان و وجود گرفتگی در شریان کلیه بر روی پارامترهای جریان خون ورودی به آرتریول­ها از طریق مدل‌سازی فیزیکی مورد بررسی قرار­گیرد و همچنین تشخیص نواحی مستعد گرفتگی در پایین دست در حضور گرفتگی شریان کلیه یکی دیگر از اهداف این پژوهش بود. جهت مدل­سازی از هندسه و شرایط مرزی واقعی استفاده‌شد. برای مدل­سازی لزجت خون، مدل­های نیوتنی و غیر نیوتنی بکار­رفته و نتایج به‌دست‌آمده با هم مقایسه شده­اند. تأثیر سه نوع گرفتگی خفیف (30 درصد)، متوسط (50 درصد) و شدید (70 درصد) بر­روی پارامترهای جریان بررسی شده­است. نقاط مستعد گرفتگی در هندسه بدون گرفتگی و باگرفتگی شناسایی‌شده و نتایج باهم مقایسه شده‌اند.نتایج نشان می­دهد که در هندسه مورد مطالعه تفاوت چندانی بین مدل­های نیوتنی و غیرنیوتنی لزجت خون وجود ندارد و می­توان خون را سیال نیوتنی در­نظر گرفت. بررسی نواحی مستعد گرفتگی نشان داد که قبل از اولین دو­شاخگی و همچنین درون اولین شاخه­ی فرعی بیشترین احتمال گرفتگی وجود دارد زیرا در این نواحی تنش برشی بیشینه است. گرفتگی­ها تأثیری روی نواحی مستعد گرفتگی ندارند اما هرچه درصد گرفتگی بیشتر باشد احتمال وجود گرفتگی در پایین‌دست بیشتر خواهد­بود.

کلیدواژه‌ها


[1] Shukla A. N., Madan T. H., Jayaram A. A., Kute V. B., Rawal J. R., Manjunath A., et al. Prevalence and predictors of renal artery stenosis in patients undergoing peripheral and coronary angiography, International urology and nephrology, Vol. 45, No. 6, pp. 1629-35, 2013.
[2] World Health Organization, 2013 [20 April 2016]. Available from: http://apps.who.int/gho/data/node.main.CODWORLD?lang=en
[3] Heflin L. A., Street C. B., Papavassiliou D. V., Edgar A., A computational investigation of the geometric factors affecting the severity of renal arterial stenoses, Journal of biorheology, Vol. 23, No. 2, pp.102-10, 2009.
[4] Janvier M. A., Destrempes F., Soulez G., Cloutier G., Validation of a new 3D-US imaging robotic system to detect and quantify lower limb arterial stenoses, In 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 339-342, 2007.
[5] Margey R., Hynes B. G., Moran D., Kiernan T. J., Jaff M. R., Atherosclerotic renal artery stenosis and renal artery stenting: an evolving therapeutic option, Expert Review of Cardiovascular Therapy, Vol. 9, pp. 1347-1360, 2011.
[6] Martinet W., Schrijvers D. M., De Meyer G.R., Necrotic cell death in atherosclerosis, Basic research in cardiology, Vol. 106, No. 5, pp. 749-60, 2011.
[7] Yang J., Lu C., Yan L., Tang X., Li W., Yang Y., et al. The association between atherosclerotic renal artery stenosis and acute kidney injury in patients undergoing cardiac surgery", PloS one, Vol. 8, No. 5, pp. 64104, 2013.
[8] Yim P. J., Cebral J. R., Weaver A., Lutz R. J., Soto O., Vasbinder G. B. C., et al. Estimation of the differential pressure at renal artery stenoses, Magnetic resonance in medicine, Vol. 51, No. 5, pp. 969-77, 2004.
[9] Kumbhani D. J., Bavry A. A., Harvey J. E., de Souza R., Scarpioni R., Bhatt D. L., et al. Clinical outcomes after percutaneous revascularization versus medical management in patients with significant renal artery stenosis: A meta-analysis of randomized controlled trials, American Heart Journal, Vol. 161, No. 3, pp. 622-30, 2011.
[10] Mortazavinia Z., Zare A., Mehdizadeh A., Effects of renal artery stenosis on realistic model of abdominal aorta and renal arteries incorporating fluid-structure interaction and pulsatile non-Newtonian blood flow", Appl Math Mech-Engl Ed,Vol. 33, No. 2, pp. 165-76, 2012.
[11] Peixoto A. J., Ditchel L. M., Santos S. F., Management of atherosclerotic renal artery stenosis, Expert Review of Cardiovascular Therapy, Vol. 8, pp. 1317-1324, 2010.
[12] Olin J., Melia M., Young J., Graor R., Risius B., Prevalence of atherosclerotic renal artery stenosis in patients with atherosclerosis elsewhere, The American journal of medicine, Vol. 88, No. 1, pp, 46-51, 1990.
[13] Zhang W., Qian Y., Lin J., Lv P., Karunanithi K., Zeng M., Hemodynamic analysis of renal artery stenosis using computational fluid dynamics technology based on unenhanced steady-state free precession magnetic resonance angiography: preliminary results, The international journal of cardiovascular imaging, Vol. 30, No. 2, pp. 367-75, 2014.
[14] Rimmer J. M., FJ G., Atherosclerotic Renovascular Disease and Progressive Renal Failure, Ann Intern Med, Vol. 118, pp. 712-9, 1993.
[15] White C.J., Catheter-based therapy for atherosclerotic renal artery stenosis, Circulation, Vol. 113, No. 11, pp. 1464-73, 2006.
[16] Lee K., Xu X., Modelling of flow and wall behaviour in a mildly stenosed tube, Medical engineering & physics, Vol. 24, No. 9, pp. 575-86, 2002.
[17] Li M., Beech-Brandt J., John L., Hoskins P., Easson W., Numerical analysis of pulsatile blood flow and vessel wall mechanics in different degrees of stenoses, Journal of biomechanics, Vol. 40, No. 16, pp.3715-24, 2007.
[18] Belzacq T., Avril S., Leriche E., Delache A., A numerical parametric study of the mechanical action of pulsatile blood flow onto axisymmetric stenosed arteries, Medical engineering & physics, Vol. 34, No. 10, pp. 1483-95, 2012.
[19] Chan W., Ding Y., Tu J., Modeling of non-Newtonian blood flow through a stenosed artery incorporating fluid-structure interaction, ANZIAM Journal, Vol. 47, pp. 507-23, 2007.
[20] Humphreys H., Winter B., Paul M., The Physiology of Sepsis and Its Implications,  Infections in the Adult Intensive Care Unit: Springer, pp. 9-23, 2013.
[21] Gijsen F., Allanic E., Van de Vosse F., Janssen J., The influence of the non-Newtonian properties of blood on the flow in large arteries: unsteady flow in a 90 curved tube, Journal of biomechanics, Vol. 32, No. 7, pp. 705-13, 1999.
[22] Fry D. L., Acute vascular endothelial changes associated with increased blood velocity gradients, Circulation research, Vol. 22, No. 2, pp. 165-97, 1968.
[23] Zhang C.,  Xie S., Li S., Pu F., Deng X., Fan Y., et al. Flow patterns and wall shear stress distribution in human internal carotid arteries: the geometric effect on the risk for stenoses, Journal of biomechanics, Vol. 45, No. 1, pp. 83-9, 2012.
[24] Fung Y., Biomechanics: material properties of living tissues, Springer, 1993.