[1] Tannaz H., Suresh V G., Microchannel size effects on local f law boiling heat transfer to a dielectric fluid. International Journal of Heat and Mass Transfer, Vol. 51, pp. 3724–3735, 2008.
[2] Karimipour A., Alipour H., Akbari O.A., Toghraie Semiromi D and Esfe M.H., Studying the effect of indentation on flow parameters and slow heat transfer of water-silver nanofluid with vrying volume fraction in a rectangular Two-Dimensional microchannel. Indian Journal of Science and Technology, Vol 8(15), 5 1707, July 2015.
[3] Nasiri M., Etemad S.Gh., Bagheri R., Experimental heat transfer of nanofluid through an annular duct. International Communications in Heat and Mass Transfer, Vol. 38, pp. 958–963, 2011.
[4] Karimipour A., Nezhad A.H., D’Orazio A., Shirani E., Investigation of the gravity effects on the mixed convection heat transfer in a microchannel using lattice Boltzmann method. Int. J. Therm. Sci, Vol. 54 pp. 142-152, 2012.
[5] Esfe M.H., Akbari M., Toghraie D., Karimipour A., Afrand M., Effect of nanofluid variable properties on mixed convection f law and heat transfer in an inclined two-sided lid-driven cavity with sinusoidal heating on sidewalls. Heat Transf. Res, Vol. 45, pp. 409-432, 2014.
[6] Karimipour A., Nezhad A.H., Behzadmehr A., Alikhani S., Abedini E., Periodic mixed convection of a nanofluid in a cavity with top lid sinusoidal motion. Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci, Vol. 225, pp. 2149-2160, 2011.
[7] Safaei M.R., Mahian O., Garoosi F., Hooman K., Karimipour A., Kazi S.N. and Gharehkhani S., Investigation of micro and nano-sized particle erosion in a 90º pipe bend using a two-phase discrete phase model. Sci. World. J. Article ID 740578, 11 pages, 2014.
[8] Safaei M.R., Togun H., Vafai K., Kazi S.N. and Badarudin A., Investigation of heat transfer enchantment in a forward-facing contracting channel using FMWCNT nanofluids. Numer. Heat Transf. A: Appl. Vol. 66, pp. 1321-1340, 2014.
[9] Chhabra R.P., Richardson J.F., Non-Newtonian Flow in the Process Industries: Fundamentals and Engineering Applications. VCH Publishers, New York, 1999.
[10] Metzner A.B., Heat Transfer in Non-Newtonian Fluids, Advances in Heat Transfer, Academic Press, New York, 1965.
[11] Skelland A.H.P., Non-Newtonian Flow and Heat Transfer, John Wiley & Sons, 1967.
[12] Cho Y.I., Hartnett J.P., Handbook of Heat Transfer Applications, McGraw-Hill, New York, 1985.
[13] Hartnett J.P., Kostic M., Heat Transfer to Newtonian and Non-Newtonian Fluids in Rectangular Ducts, in: Advances in Heat Transfer, Academic Press, New York, 1989.
[14] Esmaeilnejad A., Aminfar H., Shafiee Neistanak M., Numerical investigation of forced convection heat transfer through microchannels with non-Newtonian nanofluids. International Journal of Thermal Sciences, Vol. 75, pp. 76-86, 2014.
[15] Nikkhah Z., Karimipour A., Safaei M.R., Forghani-Tehrani P., Goodarzi M., Dahari M., Wongwises S., Forced convective heat transfer of water/functionalized multi-walled carbon nanotube nanofluids in a microchannel with oscillating heat flux and slip boundary condition. International Communications in Heat and Mass Transfer, Vol. 68, pp. 69–77, 2015.
[16] Lelea, Effects of temperature dependent thermal conductivity on Nu number behavior in micro-tubes, Int. Commun. Heat Mass Transf. 37 (2010) 245–249.
[17] Zeinali Heris S., Etemad S.Gh., Nasr Esfahany M., Numerical investigation of nanofluid laminar convective heat transfer through a circular tube. Numer. Heat Transfer A Appl, Vol. 52 (11), pp. 1043–1058, 2007.
[18] Ahmed H.E., Mohammed H.A., Yusoff M.Z., Heat transfer enhancement of laminar nanofluids f law in a triangular duct using vortex generator. Superlattice. Microst, Vol. 52, pp. 398–415, 2012.
[19] Ahmed H.E., Mohammed H.A., Yusoff M.Z., An overview on heat transfer augmentation using vortex generators and nanofluids, Approaches and applications, Renew. Sust. Energ. Rev. Vol. 16, pp. 5951–5993, 2012.
[20] Niu J., Fu C., Tan W., Slip-F law and Heat Transfer of a Non-Newtonian Nanofluid in a Microtube. Heat Transfer of a Non-Newtonian Nanofluid, Vol. 7, No. 5-37274, 2012
[21] Minea A.A., Uncertainties in modeling thermal conductivity of laminar forced convection heat transfer with water alumina nanofluids. Heat Mass Transf, Vol. 68, pp. 78–84, 2014.
[22] Moraveji M.K., Esmaeili E., Comparison between single-phase and two-phase CFD modeling of laminar forced convection f law of nanofluids in a circular tube under constant heat flux. Int. Comm. Heat Mass Transf, Vol. 39, pp. 1297–1302, 2012.
[23] Santra A.K., Sen S., Chakraborty N., Study of heat transfer augmentation in a differentially heated square cavity using copper–water nanofluid, International Journal of Thermal Sciences, Vol. 47, pp. 1113–1122, 2008.
[24] Santra A.K., Chakraborty N., Sen S., Prediction of heat transfer due to presence of copper–water nanofluid using resilient-propagation neural network. International Journal of Thermal Sciences, Vol. 48, pp. 1311–1318, 2009.
[25] Chen C.H., Hwang Y.L., Hwang S.J., Non-Newtonian fluid f law and heat transfer in microchannels. Appl. Mech. Mater, Vol. 462, pp. 275–277, 2013.
[26] Xi-Wen P.F.H., Yao Feng He Z.Z.H., Transitional and turbulent f law in a circular microtube. Experimental Thermal and Fluid Science, Vol. 32, pp. 423–31, 2007.
[27] El-Genk M.S., Yang I.H., Friction numbers and viscous dissipation heating for laminar f laws of water in microtubes, ASME J. Heat Transfer, Vol. 130, 2008, 082405.
[28] Celata G.P., Cumo M., McPhail S., Zummo G., Characterization of fluid dynamic behavior and channel wall effects in microtubes. Int. J. Heat Fluid Flow, Vol. 27, pp. 135–143, 2006.
[29] Wangskarn P., Ghorashi B. and Gorla R.S.R., A numerical solution for the turbulent flow of non-Newtonian fluids in the entrance region of a heated circular tube, Chemical & Biomedical Engineering Faculty Publications,3-1990.
[30] Hojjat M., Etemad S.Gh., Bagheri R., Thibault J., Convective heat transfer of non-Newtonian nanofluids through a uniformly heated circular tube. International Journal of Thermal Sciences, Vol. 50, pp. 525-531, 2011.
[31] Soltani S., Etemad S.Gh., Thibault J., Pool boiling heat transfer of non-Newtonian nanofluids, International Communications in Heat and Mass Transfer, Vol. 37, pp. 29–33, 2010.
[32] Shojaeian M., Kosar A., Convective heat transfer and entropy generation analysis on Newtonian and non-Newtonian fluid f laws between parallel-plates under slip boundary conditions. International Journal of Heat and Mass Transfer, Vol. 70, pp. 664–673, 2014.
[33] Hojjat M., Etemad S.Gh., Bagheri R., Thibault J., Rheological characteristics of non Newtonian nanofluids: Experimental investigation. International Communications in Heat and Mass Transfer, Vol. 38, pp. 144–148, 2011.
[34] Ghasemi B., Aminossadati S.M., Natural convection heat transfer in an inclined enclosure filled with a water-Cuo nanofluid, Numerical Heat Transfer, Part A, Vol. 55, pp. 807–823, 2009.
[35] Raisi A., Ghasemi B., Aminossadati S.M., A numerical study on the forced convection of laminar nanofluid in a microchannel with both slip and no slip conditions, Numerical Heat Transfer, Part A. Vol. 59, pp. 114–129, 2011.
[36] Chon C.H., Kihm K.D., Lee S.P., , and Choi S.U.S., Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement. Applied Physics Letters, Vol. 87, No. 15, 2005.
[37] Lelea D., Laza I., The particle thermal conductivity influence of nanofluids on thermal performance of the microtubes. International Communications in Heat and Mass Transfer, Vol. 59, pp. 61–67, 2014.
[38] Meyer J.P., McKrell T.J., Grote K., The influence of multi-walled carbon nanotubes on single-phase heat transfer and pressure drop characteristics in the transitional f law regime of smooth tubes. International Journal of Heat and Mass Transfer, Vol. 58, pp. 597–609, 2013.
[39] Li Z.X., Du D.X., Guo Z.Y., Experimental study on flow characteristics of liquid in circular micro-tubes. Microscale Thermophys. Eng. Vol. 7, pp. 253–265, 2003.
[40] Salman B.H., Mohammed H.A., Kherbeet A.Sh., Numerical and experimental investigation of heat transfer enhancement in a microtube using nanofluids. International Communications in Heat and Mass Transfer, Vol. 59, pp. 88–100, 2014.
[41] Aminossadati S.M., Raisi A., Ghasemi B., Effects of magnetic field on nanofluid forced convection in a partially heated microchannel. International Journal of Non-Linear Mechanics, Vol. 46, pp. 1373–1382, 2011.