مطالعه عددی تاثیر ضریب سرعت لغزشی بر روی مشخصه های جریان و انتقال گرما نانوسیال غیرنیوتونی آب/کربوکسی متیل سلولز-اکسید مس در یک میکرولوله افقی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، دانشکده مهندسی مکانیک، دانشگاه کاشان، کاشان، ایران

2 دانشجوی دکتری، دانشکده مهندسی مکانیک، دانشگاه کاشان، کاشان، ایران

3 دانشجوی دکتری، باشگاه پژوهشگران جوان و نخبگان، واحد خمینی شهر، دانشگاه آزاد اسلامی، واحد خمینی شهر، ایران

چکیده

در این تحقیق، جریان لایه­ای و انتقال گرمای نانوسیال غیرنیوتونی محلول کربوکسی متیل سلولز (CMC) با غلظت5/0 درصد وزنی به روش عددی بررسی می­شود. نانوذرات جامد شامل کسر حجمی 1 و 5/1 درصد نانوذره اکسید مس با قطر نانوذره معادل nm 100 می­باشند. همچنین در این بررسی اثرات ضریب سرعت لغزشی بی­بعد در حالت­های0-0.1 b*= نیز مورد توجه است. جریان لایه­ای و انتقال گرما نانوسیال غیرنیوتونی در یک میکرولوله افقی  دو بعدی با طول mm L=200 و قطرهیدرولیکی معادل mm =3 Dh شبیه­سازی عددی می­شود. به دیواره­ی میکرولوله افقیشار گرمایی ثابت معادل W/m21000 اعمال می­شود. محدوده اعداد رینولدز این پژوهش بین2000  100≤ Re ≤است. در این تحقیق، تأثیر ضریب سرعت لغزشی، کسر حجمی نانوذرات اکسید مس و عدد رینولدز بر پارامترهای جریان و انتقال گرما نانوسیال غیرنیوتونی مدنظر است. نتایج این مطالعه به صورت نمودارهای، عدد ناسلت، ضریب اصطکاک و سرعت  و دمای بی­بعد ترسیم می­شوند. نتایج این مطالعه نشان می­دهد که افزایش کسر حجمی نانوذره جامد و ضریب سرعت لغزشی باعث افزایش انتقال گرما می­شود. همچنین افزایش ضریب سرعت لغزشی تاثیر زیادی در کاهش ضریب اصطکاک در دیواره میکرولوله افقی دارد.

کلیدواژه‌ها


[1]     Tannaz H., Suresh V G., Microchannel size effects on local f law boiling heat transfer to a dielectric fluid. International Journal of Heat and Mass Transfer, Vol. 51, pp. 3724–3735, 2008.
[2]   Karimipour A., Alipour H., Akbari O.A., Toghraie Semiromi D and Esfe M.H., Studying the effect of indentation on flow parameters and slow heat transfer of water-silver nanofluid with vrying volume fraction in a rectangular Two-Dimensional microchannel. Indian Journal of Science and Technology, Vol 8(15), 5 1707, July 2015.
[3]   Nasiri M., Etemad S.Gh., Bagheri R., Experimental heat transfer of nanofluid through an annular duct. International Communications in Heat and Mass Transfer, Vol. 38, pp. 958–963, 2011.
[4]   Karimipour A., Nezhad A.H., D’Orazio A., Shirani E., Investigation of the gravity effects on the mixed convection heat transfer in a microchannel using lattice Boltzmann method. Int. J. Therm. Sci, Vol. 54 pp. 142-152, 2012.
[5]   Esfe M.H., Akbari M., Toghraie D., Karimipour A., Afrand M., Effect of nanofluid variable properties on mixed convection f law and heat transfer in an inclined two-sided lid-driven cavity with sinusoidal heating on sidewalls. Heat Transf. Res, Vol. 45, pp. 409-432, 2014.
[6]   Karimipour A., Nezhad A.H., Behzadmehr A., Alikhani S., Abedini E., Periodic mixed convection of a nanofluid in a cavity with top lid sinusoidal motion. Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci, Vol. 225, pp. 2149-2160, 2011.
[7]   Safaei M.R., Mahian O., Garoosi F., Hooman K., Karimipour A., Kazi S.N. and Gharehkhani S., Investigation of micro and nano-sized particle erosion in a 90º pipe bend using a two-phase discrete phase model. Sci. World. J. Article ID 740578, 11 pages, 2014.
[8]   Safaei M.R., Togun H., Vafai K., Kazi S.N. and Badarudin A., Investigation of heat transfer enchantment in a forward-facing contracting channel using FMWCNT nanofluids. Numer. Heat Transf. A: Appl. Vol. 66, pp. 1321-1340, 2014.
[9]     Chhabra R.P., Richardson J.F., Non-Newtonian Flow in the Process Industries: Fundamentals and Engineering Applications. VCH Publishers, New York, 1999.
[10]  Metzner A.B., Heat Transfer in Non-Newtonian Fluids, Advances in Heat Transfer, Academic Press, New York, 1965.
[11]  Skelland A.H.P., Non-Newtonian Flow and Heat Transfer, John Wiley & Sons, 1967.
[12]  Cho Y.I., Hartnett J.P., Handbook of Heat Transfer Applications, McGraw-Hill, New York, 1985.
[13]  Hartnett J.P., Kostic M., Heat Transfer to Newtonian and Non-Newtonian Fluids in Rectangular Ducts, in: Advances in Heat Transfer, Academic Press, New York, 1989.
[14]  Esmaeilnejad A., Aminfar H., Shafiee Neistanak M., Numerical investigation of forced convection heat transfer through microchannels with non-Newtonian nanofluids. International Journal of Thermal Sciences, Vol. 75, pp. 76-86, 2014.
[15]  Nikkhah Z., Karimipour A., Safaei M.R., Forghani-Tehrani P., Goodarzi M., Dahari M., Wongwises S., Forced convective heat transfer of water/functionalized multi-walled carbon nanotube nanofluids in a microchannel with oscillating heat flux and slip boundary condition. International Communications in Heat and Mass Transfer, Vol. 68, pp. 69–77,  2015.
[16]  Lelea, Effects of temperature dependent thermal conductivity on Nu number behavior in micro-tubes, Int. Commun. Heat Mass Transf. 37 (2010) 245–249.
[17]  Zeinali Heris S., Etemad S.Gh., Nasr Esfahany M., Numerical investigation of nanofluid laminar convective heat transfer through a circular tube. Numer. Heat Transfer A Appl, Vol. 52 (11), pp. 1043–1058, 2007.
[18]  Ahmed H.E., Mohammed H.A., Yusoff M.Z., Heat transfer enhancement of laminar nanofluids f law in a triangular duct using vortex generator. Superlattice. Microst, Vol. 52, pp. 398–415, 2012.
[19]  Ahmed H.E., Mohammed H.A., Yusoff M.Z., An overview on heat transfer augmentation using vortex generators and nanofluids, Approaches and applications, Renew. Sust. Energ. Rev. Vol. 16, pp. 5951–5993, 2012.
[20]  Niu J., Fu C., Tan W., Slip-F law and Heat Transfer of a Non-Newtonian Nanofluid in a Microtube. Heat Transfer of a Non-Newtonian Nanofluid, Vol. 7, No.  5-37274, 2012 
[21]  Minea A.A., Uncertainties in modeling thermal conductivity of laminar forced convection heat transfer with water alumina nanofluids. Heat Mass Transf, Vol. 68, pp. 78–84, 2014.
[22]  Moraveji M.K., Esmaeili E., Comparison between single-phase and two-phase CFD modeling of laminar forced convection f law of nanofluids in a circular tube under constant heat flux. Int. Comm. Heat Mass Transf, Vol. 39, pp. 1297–1302, 2012.
[23]  Santra A.K., Sen S., Chakraborty N., Study of heat transfer augmentation in a differentially heated square cavity using copper–water nanofluid, International Journal of Thermal Sciences, Vol. 47, pp. 1113–1122, 2008.
[24]  Santra A.K., Chakraborty N., Sen S., Prediction of heat transfer due to presence of copper–water nanofluid using resilient-propagation neural network. International Journal of Thermal Sciences, Vol. 48, pp. 1311–1318, 2009.
[25]  Chen C.H., Hwang Y.L., Hwang S.J., Non-Newtonian fluid f law and heat transfer in microchannels. Appl. Mech. Mater, Vol. 462, pp. 275–277, 2013.
[26]  Xi-Wen P.F.H., Yao Feng He Z.Z.H., Transitional and turbulent f law in a circular microtube. Experimental Thermal and Fluid Science, Vol. 32, pp. 423–31, 2007.
[27]  El-Genk M.S., Yang I.H., Friction numbers and viscous dissipation heating for laminar f laws of water in microtubes, ASME J. Heat Transfer, Vol. 130, 2008, 082405.
[28]  Celata G.P., Cumo M., McPhail S., Zummo G., Characterization of fluid dynamic behavior and channel wall effects in microtubes. Int. J. Heat Fluid Flow, Vol. 27, pp. 135–143, 2006.
[29]  Wangskarn P., Ghorashi B. and Gorla R.S.R., A numerical solution for the turbulent flow of non-Newtonian fluids in the entrance region of a heated circular tube, Chemical & Biomedical Engineering Faculty Publications,3-1990.  
[30]  Hojjat M., Etemad S.Gh., Bagheri R., Thibault J., Convective heat transfer of non-Newtonian nanofluids through a uniformly heated circular tube. International Journal of Thermal Sciences, Vol. 50, pp. 525-531, 2011.
[31]  Soltani S., Etemad S.Gh., Thibault J., Pool boiling heat transfer of non-Newtonian nanofluids, International Communications in Heat and Mass Transfer, Vol. 37, pp. 29–33, 2010.
[32]  Shojaeian M., Kosar A., Convective heat transfer and entropy generation analysis on Newtonian and non-Newtonian fluid f laws between parallel-plates under slip boundary conditions. International Journal of Heat and Mass Transfer, Vol. 70, pp. 664–673, 2014.
[33]  Hojjat M., Etemad S.Gh., Bagheri R., Thibault J., Rheological characteristics of non Newtonian nanofluids: Experimental investigation. International Communications in Heat and Mass Transfer, Vol. 38, pp. 144–148, 2011.
[34]  Ghasemi B., Aminossadati S.M., Natural convection heat transfer in an inclined enclosure filled with a water-Cuo nanofluid, Numerical Heat Transfer, Part A, Vol. 55, pp. 807–823, 2009.
[35]  Raisi A., Ghasemi B., Aminossadati S.M., A numerical study on the forced convection of laminar nanofluid in a microchannel with both slip and no slip conditions, Numerical Heat Transfer, Part A. Vol. 59, pp. 114–129, 2011.
[36]  Chon C.H., Kihm K.D., Lee S.P., , and Choi S.U.S., Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement. Applied Physics Letters, Vol. 87, No. 15, 2005.
[37]  Lelea D., Laza I., The particle thermal conductivity influence of nanofluids on thermal performance of the microtubes. International Communications in Heat and Mass Transfer, Vol. 59, pp. 61–67, 2014.
[38]   Meyer J.P., McKrell T.J., Grote K., The influence of multi-walled carbon nanotubes on single-phase heat transfer and pressure drop characteristics in the transitional f law regime of smooth tubes. International Journal of Heat and Mass Transfer, Vol. 58, pp. 597–609, 2013.
[39]  Li Z.X., Du D.X., Guo Z.Y., Experimental study on flow characteristics of liquid in circular micro-tubes. Microscale Thermophys. Eng. Vol. 7, pp. 253–265, 2003.
[40]  Salman B.H., Mohammed H.A., Kherbeet A.Sh., Numerical and experimental investigation of heat transfer enhancement in a microtube using nanofluids. International Communications in Heat and Mass Transfer, Vol. 59, pp. 88–100, 2014.
[41]  Aminossadati S.M., Raisi A., Ghasemi B., Effects of magnetic field on nanofluid forced convection in a partially heated microchannel. International Journal of Non-Linear Mechanics, Vol. 46, pp. 1373–1382, 2011.