مدل‌سازی سه بعدی و گذرای پیل سوختی غشا پلیمری با میدان جریان پینی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، گروه مهندسی مکانیک، دانشگاه اصفهان، اصفهان، ایران

2 استادیار، گروه مهندسی مکانیک، دانشگاه اصفهان، اصفهان، ایران

3 کارشناسی ارشد، گروه مهندسی مکانیک، دانشگاه صنعتی مالک اشتر اصفهان، اصفهان، ایران

4 دانشیار، گروه مهندسی مکانیک، دانشگاه صنعتی مالک اشتر اصفهان، اصفهان، ایران

5 دانشجوی دکتری مکانیک، گروه مهندسی مکانیک، دانشگاه اصفهان، اصفهان، ایران

چکیده

در پژوهش حاضر، یک مدل سه بعدی و گذرای پیل سوختی غشا پلیمری با میدان جریان پینی بررسی شده است. با حل عددی معادلات دیفرانسیل حاکم شامل معادلات بقای جرم، بقای ممنتم، بقای گونه­ها، بقای بار الکتریکی و بقای انرژی همراه با معادلات واکنش­های الکتروشیمیایی، رفتار گذرای پیل بررسی شده است. ارائه نتایج مربوط به پارامترهای اساسی همچون چگالی جریان الکتریکی، توزیع غلظت گونه­های شیمیایی، توزیع سرعت و خطوط جریان در پیل با میدان جریان پینی، درک کاملی از اصول اساسی پدیده­های انتقال در پیل سوختی غشاء پلیمری فراهم می­کند. نتایج نشان می­دهد که استفاده از میدان جریان پینی، انتقال اکسیژن به لایه کاتالیست را بهبود می­بخشد و در نتیجه باعث ایجاد چگالی جریان بالا می­شود. همچنین، مدت زمان پایداری پیل سوختی از مرتبه ثانیه است که این موضوع نشان دهنده کوتاه بودن فرآیند راه­اندازی پیل سوختی غشا پلیمری است. در این مدت زمان، پارامترهای عملکردی پیل سوختی مانند چگالی جریان، غلظت مولی واکنش­دهنده­ها و فشار پیل سوختی طی این مدت زمان به پایداری می‌رسند.

کلیدواژه‌ها


[1] Van Bussel H., Dynamic model of solid polymer fuel cellwatermanagement, J. Power Sources, Vol. 71, pp. 218–222, 1998.
[2] Um S., and Wang C.Y., Computational fluid dynamics modeling of proton exchange membrane fuel cells, J. Electrochem. Soc, vol. 147, pp. 4485–4493, 2000.
[3] Wang Y., and Wang C.Y., Transient analysis of polymer electrolyte fuel cell, J. Electrochem. Soc ,Vol. 50, pp. 1307–1315, 2005.
[4] Meng H., Numerical investigation of transient responses of PEM fuel cell using a two-phase non-isothermal mixed-domain model, J. Power .Sources, Vol. 171, pp. 738–746, 2007.
[5] Serincan M.F., and Yesilyurt S., Transient Analysis of Proton Electrolyte Membrane Fuel Cell (PEMFC) at start-up and failure, Willy. Interscience, Vol. 2, pp. 118-127, 2007.
[6] Chen F., Ying Zhi W., Hsin C., Wei-Mon Y., Soong Y., Convenient two-dimensional model for design of fuel channels for proton exchange membrane fuel cells, J. Power Sources, Vol. 34, pp. 125-128, 2004.
[7] Wang Y., and Wang C.Y., Dynamics of polymer electrolyte fuel cells undergoing load changes, Electrochimical Acta, Vol. 51, pp. 3924-3933, 2006.
[8] Headley A. J., , Chen D.,. Critical control volume sizing for improved transient thermal modeling of PEM fuel cells, Int. J. Hydrogen Energy, Vol. 40. No. 24. pp. 7762–7768, 2015.
[9] Chaudhary S., Sachan V. K, Bhattacharya, P. K.,  Two dimensional modelling of water uptake in proton exchange membrane fuel cell, Int. J. Hydrogen Energy, Vol. 39, No. , pp. 17802–17818, 2014
[10] Verma A., Pitchumani R., Influence of transient operating parameters on the mechanical behavior of fuel cells, Int.J. Hydrogen Energy, Vol.  40, No. 26, pp. 8442–8453, 2015.
[11] Bikash M., and Junxiao W., Study of the effects of various parameters on the transient current density at polymer membrane fuel cell start-up, J. Power Sources, Vol. 34, pp. 2296–2307, 2009.
[12] Obayopo S., Bello-Ochende T., and Meyer J., Modeling and optimization of reactant gas transport in a PEM fuel cell with a transverse pin fin insert in channel flow, Int. J. Hydrogen Energy, Vol.37, pp.10286-10298, 2012.
[13] Imdat T., and Merthan B., Numerical study of assembly pressure effect on the performance of proton exchange membrane fuel cell, Int. J. Hydrogen Energy, Vol. 35, pp. 2134-2140, 2010.
[14] Suzuki A., Hattori T., Miura R., Tsuboi H., Ozomu N., and Takaba H.,“Porosity and Pt content in the catalyst layer of PEMFC: effects on diffusion and polarization characteristics, J. Electrochem. Soc, Vol. 5, pp. 1948-1961, 2010.
[15] Springer T., Zawodzinski T., and Gottesfeld S., Electrode materials and process for energy conversion and storage, J. Electrochem. Soc, Vol. 13, pp. 1-14, 1997.
[16] Dunn Martin L., and Minoru T., The effective thermal conductivity of composites with coated reinforcement and the application to imperfect interfaces, J. Applied Physics, Vol. 73, pp. 1711-1722, 1993.
[17] Wu H. W., A review of recent development: Transport and performance modeling of PEM fuel cells, Applied Energy, Vol. 165, pp. 81–106, 2016.
 [18] Afshari E., Jazayeri S.A., and Mollayi Barzi Y., Effect of water phase change on temperature distributionin proton exchange membrane fuel cells, Heat Mass Transfer, Vol. 46, pp. 1295–1305, 2101.
[19] Carton J., and Olabi A., Three-dimensional proton exchange membrane fuel cell model: Comparison of double channel and open pore cellular foam flow plates, Energy, (In Press) 2016.
[20] Xing L., Liu X., Alaje T., Kumar R., Mamlouk, M., and Scott K., A two-phase flow and non-isothermal agglomerate model for a proton exchange membrane (PEM) fuel cell, Energy, Vol. 73, pp. 618–34, 2014.
[21] Afshari E., and Houreh N.B., Numerical predictions of performance of the proton exchange membrane fuel cell with baffle(s)-blocked flow field designs, Int. J. Modern Physics B, Vol. 28, No. 16, 1450097–1450113, 2014.
[22] Perng S.W., Wu H.W., and Jue T.C., Cheng, K.C., Numerical predictions of a PEM fuel cell performance enhancement by a rectangular cylinder installed transversely in the flow channel, Applied Energy, Vol. 86, pp. 1541–1554, 2009.
[23] Kandlikar S. G., See E. J., and Banerjee R., Modeling Two-Phase Pressure Drop along PEM Fuel Cell Reactant Channels, J. Electrochem. Soc. vol. 162, No. 7, F772-F782, 2015.
[24] Wang X., Zhang X., Yan W., and Lee D., A. Su , Determination of the optimal active area for proton exchange membrane fuel cells with parallel, interdigitated or serpentine designs, Int. J. Hydrogen Energy, Vol. 34, pp. 3823–3832, 2009.