طراحی کنترل گر رهگیر جهت شبیه سازی حین پرواز رفتار هواپیمای جت جنگنده توسط جت بدون سرنشین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه آزاد اسلامی واحد دامغان

2 دانشیار، دانشکده مهندسی، دانشگاه اصفهان، اصفهان، ایران

چکیده

در این مقاله امکان شبیه­سازی حین پرواز رفتار دینامیک طولی و عرضی یک هواپیمای جت جنگنده توسط یک جت بدون سرنشین مورد ارزیابی قرار گرفته و کنترل­گر مورد نیاز برای اجرای شبیه سازی حین پرواز و رهگیری مسیر پروازی آن طراحی شده است. طراحی کنترل­گر بر اساس روش جایدهی قطب و رهگیری مسیر به انجام رسیده و در آن کنترل­گر به نحوی طراحی شده است که جت بدون سرنشین قادر به تعقیب رفتار دینامیک طولی و عرضی هواپیمای جت جنگنده در حین پرواز باشد. در این راستا پس از به کارگیری کنترل­گر  طراحی شده در جت بدون سرنشین به شبیه سازی رفتار جت جنگنده توسط آن پرداخته و نتایج شبیه­سازی حاکی از رهگیری مطلوب رفتار دینامیکی هواپیمای جت جنگنده توسط جت بدون سرنشین در محدوده مشترک عملکردی آنها می‌باشد. برای صحه گذاری بر طراحی انجام شده به شبیه سازی اطلاعات تست پروازی جت­جنگنده توسط جت بدون سرنشین پرداخته شده است. مقایسه نتایج شبیه سازی با اطلاعات تست پروازی جت جنگنده، توانایی شبیه سازی حین پرواز رفتار دینامیکی جت جنگنده توسط جت بدون سرنشین را به اثبات می‌رساند. 

کلیدواژه‌ها


[1] Powers B. G., and Sarrafian S. K. “Simulation Studies of Alternate Longitudinal Control Systems for the Space Shuttle Orbiter in the Landing Regime, AIAA Atmospheric Flight Mechanics Conference Proceedings, Williamsburg, Virginia, pp. 182–192. AIAA-86-2127, Aug. 1986.
[2] Berry D. T., and Powers B. G., and Szalai K. J., and Wilson R J., In-Flight Evaluation of Control System Pure Time Delays, J. of Aircraft, vol. 19, no. 4, pp. 318–323, Apr. 1982.
[3] Shafer M. F., Inflight Simulation Studies at Nasa Dryden Flight Research Facility, Dryden Flight Center, Ewards, California, NASA Technical Memorandom 4396, 1992.
[4] Weingarten N. C., In-Flight Simulation of the Space Shuttle Orbiter During Landing Approach and Touchdown in the Total In-Flight Simulator (TIFS), Arvin/Calspan Advanced Technology Center, Buffalo, NY, Technical Report 6339-F-1, Sep. 1978.
[5] Weingarten N. C., In-Flight Simulation of the Space Shuttle (STS-1) During Landing Approach with Pilot-Induced Oscillation Suppressor, Arvin/Calspan Advanced Technology Center, Buffalo, NY, Technical Report 6339-F-2, Dec. 1979.
[6] Zhifu G., Jian C., and Keding Z. Design and Experiments of Model-free Compound Controller of Flight Simulator, Chinese Journal of Aeronautics, Volume 22, Issue 6, pp. 644-648, 2009.
[7] Lone M., Cooke A., Review of pilot models used in aircraft flight dynamics, Aerospace Science and Technology, Vol. 34, pp. 55-74, April 2014.
 [8] Johansson K., Dyreklev P., Granbom O., and Calvet M. C., “In-flight and ground testing of single event upset sensitivity in static RAMs”, IEEE Transactions on Nuclear Science, vol. 45, no. 3, pp. 1628-1632, 1998.
[9] Weingarten N. C., An In-Flight Investigation of Various Longitudinal Flight Control Systems in the Space Shuttle Orbiter during Approach and Landing, Arvin/Calspan, Buffalo, NY, Technical Report 7263-1, Dec. 1985.
[10]Ray R. J., Evaluating The Dynamic Response Of In-Flight Thrust Calculation echniques During Throttle Transients, NASA Technical Memorandum 4591, NASA Dryden Flight Research Center,1994, Edwards, California
[11]Corda S., Franz R.J.,Blanton J.N., M. Vachon J., and DeBoer J.B., In-Flight Vibration Environment of the NASA F-15B Flight Test Fixture, NASA/TM-2002-210719, NASA Dryden Flight Research Cente, Edwards, California, February 2002
[12]Weingarten N.C., History Of In-Flight Simulation & Flying Qualities Research At Calspan, Journal of Aircraft, Vol 42, No 2, March/April 2005, AIAA Atmospheric Flight Mechanics Conference, August 2003, Austin, TX pp 1-16;
[13]Burki-Cohen J.,Tiauw Go A.S., Training Value of a Fixed-Base Flight Simulator With Dynamic Seat, AIAA Modeling and Simulation Technologies Conference and Exhibit, 20 - 23 August 2007, Hilton Head, South Carolina
[14]Kim C., A Study on the Design and Validation of Switching Control Law, Journal of Institute of Control, Robotics and Systems,  Volume 17, Issue 1, 2011, pp.54-60
[15]Cunningham k., Cox D., Murri D., Riddick S., A Piloted Evaluation of Damage Accommodating Flight Control Using a Remotely Piloted Vehicle, AIAA Guidance, Navigation, and Control Conference Portland, Oregon, agu 2011 pp 8-11.
[16]Pashilkar A.A., Trends in Simulation Technologies for Aircraft Design. Journal of Aerospace Science and Technology, 22 (1). pp. 1-10, 2014.
 [17]Navatha A.,Kiran B., Hiremath S.S., Karunanidhi S., Dynamic Analysis of Electro Hydrostatic Actuation System, 2016
[18] Min B. N., Stone R. H., and Wong, K. C., Control and simulation of arbitrary flight trajectory-tracking , Control Engineering Practice, Volume 13, Issue 5, pp. 601-612, 2005
[19] Ogata K., Modern Control Engineering, Prentice-Hall, Upper Saddle River, NJ, 3 rd edition, 1997.
[20] Tewari A.,Modern Control Design with MATLAB and SIMULINK, Wiley & Sons, Chichester, U.K., 2002.
[21] Stevens B. L. Aircraft Control and Simulation, John Wiley & Sons, New York, 1992.
[22] Hoffmann, G. M., Huang, H., Waslander S. L., and Tomlin C. J., Precision flight control for a multi-vehicle quadrotor helicopter testbed”, Control Engineering Practice, Volume 19, Issue 9, pp. 1023-1036, 2011.
[23] Guowei C. G., Chen B. M., Dong X., and Lee T. H., Design and implementation of a robust and nonlinear flight control system for an unmanned helicopter, Mechatronics, Volume 21, Issue 5, pp. 803-820, 2011.
[24]AGARD Flight Test Techniques-AG300, vol. 3, part1, 1986.
[25] Grove R. D., Bowles R. L., and Mayhew S. C., A Procedure for Estimating Stability and Control Parameters From Flight Test Data by Using Maximum Likelihood Method Employing a Real Time Digital System", NASA TN D-6735, May 1972.
[26] LAN C. E., Kaiyuan W., and Jiang, Y., Flight Characteristics Analysis Based on QAR Data of a Jet Transport During Landing at a High-altitude Airport, Chinese Journal of Aeronautics, Volume 25, Issue 1, pp. 13-24, 2012.
[27] Taylor L. W., and Iliff, K. W., "System Identification Using a Modified Newton Raphson Method- A FORTRAN Program", NASA TN D-6734, May 1972.
[28] Ozdemir U., Jafarov E. M., and Kavsaoglu, M. S., Calculation of the longitudinal stability derivatives of a transport aircraft and analysis of longitudinal modes , 9th WSEAS International Conference on Automatic Control, Modelling and Simulation (ACMOS 07), Istanbul, pp. 105-10, , 27-29 May2007.
[29] Roskam J., Airplane Flight Dynamics and Automatic Flight Control, Lawrence Univ, Kansas, 1979.
[30] Nelson R. C., Flight Stablity and Automatic Control, McGraw-Hill, New York, 1989.
[31] Astrom K .J., and Bohlin, T., Numerical Identification of Dynamic Systems From Normal Operating Records, Proceeding of the 2nd IFAC Symposium on Theory of Self-Adaptive Control Systems, England (UK), edited by P. H. Hammond, Plenum, New York, pp 96-111, 1965.
[32] Press W. H., Teukolsky S. A., and Vetterling W. T., Numerical Recipes, the art of scientific computing, 3rd edition, Cambrige University Press, New York, Sep 2007.
[33] Thomson D., and Bradley, R., Inverse simulation as a tool for flight dynamics research—Principles and applications Progress in Aerospace Sciences, Volume 42, Issue 3, pp. 174-210, 2006.
[34] Callaham J. B.,Maximum Likelihood Estimation of Aircraft Stability and Control Coefficients for Low to near Stall/Spin Angle of Attach", Thesis, Air force Institute of technology, 1973.
[35] Ozdemir U., and Kavsaoglu M. S., Linear and Nonlinear Simulation of Aircraft Dynamics Using Body Axis System, International Journal of aircraft engineering and aerospace technology, Vol. 80, no 6, pp. 638-648, 2008.
[36] Clark J. B., and Jacques D. R., Flight test results for UAVs using boid guidance algorithms, Procedia Computer Science, Volume 8, no. 7, pp. 232-238, 2012.
[37] Liu F., Wang L., and Tan X., Digital virtual flight testing and evaluation method for flight characteristics airworthiness compliance of civil aircraft based on HQRM, Chinese Journal of Aeronautics, Volume 28, Issue 1, pp. 112-120, February 2015.
[38] Bruno O. S., and Teixeira L. A., Torres P., and Iscold L. A., Flight path reconstruction – A comparison of nonlinear Kalman filter and smoother algorithms, Aerospace Science and Technology, Volume 15, Issue 1, pp. 60-71,2011.