[1] Bulter B. W., Denison M. K., Webb B. W., Radiation heat transfer in a laboratory scale pulverized coal fired reactor, Experimental Thermal and Fluid Science, Vol. 9, pp. 69-79, 1994.
[2] Frank J. H., Barlow R. S., Lundquist C., Radiation and nitric oxide formation in turbulent non-premixed jet flames, Proceedings of the Combustion Institute, Vol. 28, pp. 447-454, 2000.
[3] Watanabe H., Suwa Y., Matsushita Y., Morozumi Y., Aoki H., Tanno S., Miura T., Spray combustion simulation including soot and NO formation, Energy Coversion and Management, Vol. 48, pp. 2077-2089, 2007.
[4] Incropera F. P., Dewitt D. P., Bergman T. L., Lavine A. S., Introduction to Heat Transfer, Fifth Edittion, pp. 400-496, New York: Wiley, 2006.
[5] Khatami R., Levendis Y. A., On the deduction of single coal Particle combustion temperature from three color optical pyrometry, Combustion and Flame, Vol. 158, pp. 1822-1836, 2011.
[6] Snelling D. R., Thomson K. A., Smallwood G. J., Gulder O. L., Weckman E. J., Fraser R. A., Spectrally resolved measurement of flame radiation to determine soot temperature and concentration, AIAA Journal, Vol. 40, pp. 1789-1795, 2002.
[7] Baek S. W., Kim J. J., Kim H. S., Kang S. H., Effects of addition of solid particles on thermal characteristics in hydrogen-air flame, Combustion Science and Technology, Vol. 174, No. 8, pp. 99-116, 2002.
[8] Hunty W. P., Lee G. K., Improved radiative heat transfer from hydrogen flames, J. Hydrogen Energy, Vol. 16, No. 1, pp. 47-53, 1991.
[9] Saji C. B., Balaji C., Sundararajan T., Investigation of soot transport and radiative heat transfer in an ethylene jet diffusion flame, International Journal of Heat and Mass Transfer, Vol. 51, pp. 4287-4299, 2008.
[10] Paul S. C., Paul M. C., Radiative heat transfer during turbulent combustion process, International Communications in Heat and Mass Transfer, Vol. 37, pp. 1-6, 2010.
[12] Javadi S. M., Moghiman M., Experimental study of natural gas temperature effects on the flame luminosity and NO emission in a 120 kW boiler, Fuel and Combustion Journal, Vol. 4, pp. 87-95, 2011.
[13] Pourhoseini S. H., Moghiman M., Effect of pulverized anthracite coal particles injection on thermal and radiative characteristics of natural gas flame: an experimental study, Fuel, vol. 140, pp. 44–49, 2015.
[14] Heat capacity of liquid water from 0 to 100 C. www. vaxasoftware. com, 2016.
[15] Pourhoseini S. H., Saeedi A., Moghiman M., Experimental and numerical study on the effect of soot injection on Nox reduction and radiation enhancement in a natuarl gas turbulent flame, Arabian Journal for Science and Engineering., Vol. 38, pp. 69-75, 2013.
[16] Augustine C., Tester J. W., Hydrothermal flames: from phenomenological experimental demonstrations to quantitive understanding, The Journal of Supercritical Fluids, Vol. 47, pp. 415-430, 2009.
[17] Madadi V., Tavakoli T., Rahimi A., First and second thermodynamic law analyses applied to a solar dish collector, Journal of Non-Equilibrium Thermodynamics, Vol. 39, pp. 183-197, 2014.
[18] Murali G., Mayilsamy K., Arjunan T. V., An experimental study of PCM-incorporated thermosyphon solar water heating system, International Journal of Green Energy, Vol. 12, pp. 978-986, 2015.
[19] Augustine C., Tester J. W., Hydrothermal flames: from phenomenological experimental demonstrations to quantitive understanding, The Journal of Supercritical Fluids, Vol. 47, pp. 415-430, 2009.
[20] GruenbergerT. M., Moghiman M., Bowen P. J., Syred N., Dynamic of soot formation by turbulent combustion and thermal decomposition of natural gas, Journal of Combustion Science and Technology, Vol. 174, pp. 67-86, 2002.