[1] Das, Sarit K., et al., Nanofluids: science and technology. John Wiley & Sons, 2007.
[2] Chol, S. U. S., Enhancing thermal conductivity of fluids with nanoparticles, ASME-Publications-Fed 231 PP. 99-106, 1995.
[3] Gupta Soujit Sen, et al., Thermal conductivity enhancement of nanofluids containing graphene nanosheets, Journal of Applied Physics 110.8, 084302, 2011.
[4] Aravind, SS Jyothirmayee, and S. Ramaprabhu. Surfactant free graphene nanosheets based nanofluids by in-situ reduction of alkaline graphite oxide suspensions., Journal of Applied Physics 110.12, 124326, 2011.
[5] Yu, Wei, et al. Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets, Physics Letters A. 375.10, 1323-1328, 2011.
[6] Barbés, Benigno, et al. Thermal conductivity and specific heat capacity measurements of CuO nanofluids, Journal of Thermal Analysis and Calorimetry 115.2, 1883-1891, 2014.
[7] Paul, G., et al., Techniques for measuring the thermal conductivity of nanofluids: a review, Renewable and Sustainable Energy Reviews 14.7 (): 1913-1924. nanofluids: A review, Renewable and Sustainable Energy Reviews 14, 1913–1924, 2010.
[8 Eslamloueyan, R., and M. H. Khademi, Estimation of thermal conductivity of pure gases by using artificial neural networks, International Journal of Thermal Sciences 48.6, 1094-1101, 2009.
[9] Najafi, Alireza, et al. Thermal Conductivity Prediction of Pure Liquids Using Multi-Layer Perceptron Neural Network, Journal of Thermophysics and Heat Transfer 29.1, 197-202, 2014.
[10] Bhoopal, Rajpal S., et al. Applicability of artificial neural networks to predict effective thermal conductivity of highly porous metal foams, Journal of Porous Media 16.7, 2013..
[11] Papari, Mohammad M., et al., Modeling thermal conductivity augmentation of nanofluids using diffusion neural networks, International Journal of Thermal Sciences 50.1, 44-52, 2011.
[12] Hojjat, M., et al., Thermal conductivity of non-Newtonian nanofluids: experimental data and modeling using neural network, International Journal of Heat and Mass Transfer 54.5, 1017-1023, 2011.
[13] Longo, Giovanni A., et al., Application of artificial neural network (ANN) for the prediction of thermal conductivity of oxide–water nanofluids, Nano Energy 1.2, 290-296, 2012.
[14] Esfe, Mohammad Hemmat, et al., Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network, Journal of Thermal Analysis and Calorimetry 118.1, 287-294, 2014.
[15] Esfe, Mohammad Hemmat, et al. Modeling of thermal conductivity of ZnO-EG using experimental data and ANN methods, International Communications in Heat and Mass Transfer 63, 35-40, 2015.
[16] Haykin, Simon, and Neural Network., A comprehensive foundation, Neural Networks 2.2004, 2004.
[17] Araghinejad, Shahab. Data-driven modeling: using MATLAB® in water resources and environmental engineering. Vol. 67. Springer Science & Business Media, 2013.
[18] Baby, Tessy Theres, and Ramaprabhu S., Investigation of thermal and electrical conductivity of graphene based nanofluids, Journal of Applied Physics 108.12, 124308, 2010.
[19] Buongiorno, Jacopo, et al. A benchmark study on the thermal conductivity of nanofluids, Journal of Applied Physics 106.9, 094312, 2009.