[1] Yamanouchi M., Koizumi M., Functionally gradient materials. Proceeding Of The First International Symposium On Functionally Graded Materials, 1991.
[2] Najafizade, M. M., Eslami M.R., Thermoelastic Stability of orthotropic circular plates. Journal of Thermal Stresses 25(10): pp. 985- 1005, 2002.
[3] Najafizadeh M. M., Heydari H.R., Thermal buckling of functionally graded circular plates based on higher order shear deformation plate theory, European Journal of Mechanics A/Solid 23(6): pp. 1085- 1100, 2004.
[4] Ma L. S., Wang T.J., Nonlinear bending and post buckling of a functionally graded circular plate under mechanical and thermal loading. International Journal of Solid and Structures;40:3311–30, 2003.
[5] Shahrjerdi A., Bayat M., Mustapha F. Sapuan S.M., Zahari, R. Free Vibration Analysis of Functionally Graded Quadrangle Plates Using Second Order Shear Deformation Theory. Australian Journal of Basic and Applied Sciences. 4(5): pp. 893- 905, 2010.
[6] Najafizadeh M. M., Heydari H.R., An exact solution for buckling of functionally graded circular plates based on higher order shear deformation plate theory under uniform radial compression. International Journal of Mechanical Sciences. 50(3): pp. 603- 612, 2008.
[7] Ghiasian S. E., Kiani Y., Sadighi M., Eslami M. R., Thermal buckling of shear deformable temperature dependent circular/annular FGM plates. International Journal of Mechanical Sciences. 81, pp. 137-148, 2014.
[8] Jabbari M., Joubaneh, E. F., Mojahedin A. Thermal buckling analysis of porous circular plate with piezoelectric actuators based on first order shear deformation theory. International Journal of Mechanical Sciences. 83, pp. 57-64, 2014.
[9] Reddy J. N., Khdeir A. A., Buckling and vibration of laminated composite plate using various plate theories. AIAA Journal; 27(12): pp.1808–17, 1989.
[10] Darvizeh M., Darvizeh A., Thermal buckling analysis of moderately thick composite cylindrical shells under axisymmetric thermal loading. Iranian Journal of Mechanical Engineering; 6(1): pp. 99–107, 2007
[11] Najafizadeh M. M. Onvan, A. Mechanical buckling analysis of a FGM circular plate with actuator-actuator piezoelectric layers, based on neutral-Axis’ position and using first-frder shear deformation plate theory. Iranian Journal of Mechanical Engineering; 6(1): pp. 43–56, 2010
[12] Krizevsky G., Stavsky Y., Refined theory for vibrations and buckling of laminated isotropic annular plates”. International Journal of Mechanical Sciences.38(5): pp. 539–55, 1996.
[13] Satouri S., Kargarnovin M. H., Allahkarami F., Asanjarani A., Application of third order shear deformation theory in buckling analysis of 2D-functionally graded cylindrical shell reinforced by axial stiffeners. Composites Part B: Engineering. 79, pp. 236-253, 2015.
[14] Shen H. S., Functionally Graded Materials: Nonlinear Analysis of Plates and Shells”, CRC Press, Taylor and Francis Group, Boca Raton, 2009.
[15] Alipour M. M., Shariyat M., Stress Analysis of Two-directional FGM Moderately Thick Constrained Circular Plates with Non-uniform Load and Substrate Stiffness Distributions”. Journal of Solid Mechanics Vol. 2, No. 4, pp. 316- 331, 2010.
[16] Reddy J. N., Cheng Z.Q., Three dimensional trenchant deformations of functionally graded rectangular plates. European Journal of Mechanics A/Solids;20: pp. 841–855, 2001.
[17] Brush D.O., Almroth B.O., Buckling of bars, plates and shells. New York: McGraw Hill; 1975.
[18] Najafizadeh M. M., Eslami M.R., Buckling analysis of circular plates of functionally graded materials under uniform radial compression. International Journal of Mechanical Sciences 44(12): pp. 2479- 2493, 2002.
[19] Suresh S., Mortensen A., Fundamentals of functionally graded materials, Barnes and Noble Publications; 1998.
[20] Fuchiyama T., Noda N., Tsuji T., Obata Y., Analysis of thermal stress and stress intensity factor of functionally gradient materials”. Ceramic Transactions Functionally Gradient Materials. 34: pp.425–32, 1993.
[21] Najafizadeh M. M., Eslami M. R., First-order theory- based thermoelastic stability of functionally graded material circular plates. AIAA Journal 40(7): pp. 1444- 1450, 2002.
[22] Najafizadeh M. M., Hedayati B., Mechanical stability analysis of FGM circular plates using first order shear deformation theory. ISME Iranian Journal of Mechanical Engineering 5(1): pp. 18- 34, 2004.