تحلیل تجربی رفتار مکانیکی صفحات دوقطبی کامپوزیتی در پیل های سوختی پلیمری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، مهندسی مکانیک، دانشگاه تربیت دبیر شهید رجائی، تهران، ایران

2 دانشیار، مهندسی مکانیک، دانشگاه تربیت دبیر شهید رجائی، تهران، ایران

3 دانشیار، گروه شیمی، علوم پایه، دانشگاه تربیت دبیر شهید رجائی، تهران، ایران

چکیده

صفحات دوقطبی یکی از اجزای اصلی پیل سوختی پلیمری است. در این مقاله رفتار مکانیکی صفحات دوقطبی کامپوزیتی بررسی و با معیار دپارتمان انرژی مقایسه شده است. تمام نمونه­ها با روش ریخته­گری تحت فشار و تحت پرس گرم تهیه شدند. برای ساخت صفحات دوقطبی کامپوزیتی از پودر رزین فنولیک به­عنوان زمینه کامپوزیت استفاده شد. به منظور افزایش استحکام خمشی و استحکام ضربه، از الیاف کربن و پارچه کربنی به­عنوان تقویت­کننده استفاده شد. با بکارگیری پودر گرافیت در ساختار کامپوزیت میزان رسانایی الکتریکی نمونه­ها نیز بررسی شد. به منظور بررسی رفتار مکانیکی صفحات دوقطبی، نمونه­ها با درصدهای وزنی مختلف رزین فنولیک تولید و مورد آزمایش­­ قرار گرفت. استحکام خمشی نمونه‌ با 20% وزنی رزین، برابر  MPa05/23 اندازه­گیری شد که 7% از معیار Department of  Energy (دپارتمان انرژی) کمتر است. با افزودن 2% وزنی رزین، استحکام خمشی 11% از معیار DOE بیشتر شد. در کامپوزیت با 20% وزنی رزین استحکام ضربه­ی نمونه­ها به طور چشم­گیری نسبت به معیار DOE افزایش یافت. برای افزایش رسانایی الکتریکی نمونه­ها، پودر گرافیت فرآوری شد. ریخت­شناسی نمونه­ها با استفاده از میکروسکوپ الکترونی روبشی (SEM) انجام شد. تصاویر SEM نشان می­دهند که فرآوری پودر گرافیت باعث بزرگتر شدن صفحات مولکولی گرافیت شده و رسانایی الکتریکی سطحی نمونه­ها را افزایش می‌دهد. در نهایت، نتایج نشان داد که افزایش درصد وزنی رزین، باعث افزایش استحکام خمشی و استحکام ضربه­ی صفحات دوقطبی کامپوزیتی شده و میزان هدایت الکتریکی سطحی آنها را نسبت به معیار DOE کاهش می‌دهد.

کلیدواژه‌ها


[1]  Belali Owsia M., Hosseinipour S. J., Bakhshi Jooybari M., Gorji A., Forming of metallic bipolar plate with pin-type pattern by using hydroforming process in convex die', Modares Mechanical Engineering, Vol. 14, No. 10, pp. 150-158, 2014.
[2]  Antunes R. A., de Oliveira M. C. L., Ett G., Ett V., Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: A review of the main challenges to improve electrical performance, Journal of Power Sources, Vol. 196, No. 6, pp. 2945-2961, 3/15/, 2011.
[3]  Kakati B. K., Deka D., Differences in physico-mechanical behaviors of resol(e) and novolac type phenolic resin based composite bipolar plate for proton exchange membrane (PEM) fuel cell, Electrochimica Acta, Vol. 52, No. 25, pp. 7330-7336, 9//, 2007.
[4]  Mathur R. B., Dhakate S. R., Gupta D. K., Dhami T. L., Aggarwal R. K., Effect of different carbon fillers on the properties of graphite composite bipolar plate, Journal of Materials Processing Technology, Vol. 203, No. 1–3, pp. 184-192, 7/18/, 2008.
[5]  P. K. Bhlapibul S, Preparation of graphite composite bipolar plate for PEMFC, Korean JChem Eng, Vol. 25, pp. 1226–31, 2008.
[6]  Mohammadtabar N., Bakhshi-Jooybari M., Hosseinipour S.J., Gorji A.H., Study of effective parameters in hydroforming of fuel cell metallic bipolar plates with parallel serpentine flow field, Modares Mechanical Engineering, Vol. 14, No. 8, pp. 17-27, 2014.
[7]  Kakati B. K., Sathiyamoorthy D., Verma A., Electrochemical and mechanical behavior of carbon composite bipolar plate for fuel cell, International Journal of Hydrogen Energy, Vol. 35, No. 9, pp. 4185-4194, 5//, 2010.
[8]  Vielstich W., Handbook of Fuel Cells: Fundamentals, Technology, Applications, 4-Volume Set., pp. 3826, New York: Wiley, 2003.
[9]  D. a. B. Brett, N, Bipolar Plates: The Lungs of The PEM Fuel Cell, The Fuel Cell Review', Vol. 2, pp. 15-23, 2005.
[10] Tawfik H., Hung Y., Mahajan D., Metal bipolar plates for PEM fuel cell—A review, Journal of Power Sources, Vol. 163, No. 2, pp. 755-767, 1/1/, 2007.
[11] Dhakate S. R., Sharma S., Borah M., Mathur R. B., Dhami T. L., Expanded graphite-based electrically conductive composites as bipolar plate for PEM fuel cell, International Journal of Hydrogen Energy, Vol. 33, No. 23, pp. 7146-7152, 12//, 2008.
[12] Maheshwari P. H., Mathur R. B., Dhami T. L., Fabrication of high strength and a low weight composite bipolar plate for fuel cell applications, Journal of Power Sources, Vol. 173, No. 1, pp. 394-403, 11/8/, 2007.
[13] Kang S.-J., Kim D. O., Lee J.-H., Lee P.-C., M.-H. Lee, Y. Lee, J. Y. Lee, H. R. Choi, J.-H. Lee, Y.-S. Oh, J.-D. Nam, ''Solvent-assisted graphite loading for highly conductive phenolic resin bipolar plates for proton exchange membrane fuel cells'', Journal of Power Sources, Vol. 195, No. 12, pp. 3794-3801, 6/15/, 2010.
[14] Taherian R., Hadianfard M. J., Golikand A. N., Manufacture of a polymer-based carbon nanocomposite as bipolar plate of proton exchange membrane fuel cells, Materials & Design, Vol. 49, pp. 242-251, 8//, 2013.
[15] Hwang I. U., Yu H. N., Kim S. S., Lee D. G., Suh J. D., Lee S. H., Ahn B. K., Kim S. H., Lim T. W., Bipolar plate made of carbon fiber epoxy composite for polymer electrolyte membrane fuel cells'', Journal of Power Sources, Vol. 184, No. 1, pp. 90-94, 9/15/, 2008.
[16] S. I. Heo, K. S. Oh, J. C. Yun, S. H. Jung, Y. C. Yang, K. S. Han, ''Development of preform moulding technique using expanded graphite for proton exchange membrane fuel cell bipolar plates, Journal of Power Sources, Vol. 171, No. 2, pp. 396-403, 9/27/, 2007.
[17] Jiang B., Stübler N., Wu W., Li Q., Ziegmann G., Meiners D., Manufacturing and characterization of bipolar fuel cell plate with textile reinforced polymer composites, Materials & Design, Vol. 65, pp. 1011-1020, 1//, 2015.
[18] Marc Andre Meyers, Krishan Kumar Chawla, Mechanical Behavior of Materials, Second Edittion, pp. 193-198, New York: cambridge university press, 2006.
[19] Taherian R., A review of composite and metallic bipolar plates in proton exchange membrane fuel cell: Materials, fabrication, and material selection, Journal of Power Sources, Vol. 265, pp. 370-390, 11/1/, 2014.