بررسی مولفه‌های نوسانی و نسبت منظری بال صلب در حرکت فراز و فرود در محدوده رینولدز ریزپرنده‌ها

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه مهندسی هوافضا ، دانشگاه فردوسی مشهد، مشهد، ایران

2 دانشیار، گروه مهندسی مکانیک، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

در این تحقیق با استفاده از روش حجم محدود و کاربرد شبکه‌های دینامیکی به شبیه‌سازی عددی سه بعدی جریان سیال ناپایای تراکم ناپذیر و لایه‌ای در اطراف بال نوسانی با حرکت فراز و فرود، در محدوده اعداد رینولدز ریز پرنده‌ها و ماهی‌ها پرداخته شده است. در این شبیه‌سازی، از تکنیک شبکه‌های دینامیکی با استفاده از روش حرکت جسم صلب ، بهره گرفته شده است. نتایج این شبیه‌سازی با نتایج تجربی و عددی منتشر شده مقایسه، که صحت نتایج شبیه‌سازی حاضر را تائید می‌نماید. در این پژوهش، به بررسی اثر فرکانس کاهیده و دامنه نوسان و نیز مقایسه اثر همزمان این دو، همچنین به بررسی اثر طول بال بر نیروی رانش پرداخته شده است. این شبیه‌سازی‌ها در عدد رینولدز 3000 و در چند نسبت منظری، فرکانس کاهیده و دامنه نوسان انجام شده است. نتایج این تحقیق نشان می­دهد که با افزایش فرکانس کاهیده و دامنه نوسان، زاویه حمله نسبی افزایش یافته که خود منجر به افزایش اختلاف فشار در اطراف جسم می­شود و در بین فرکانس کاهیده و دامنه نوسان، افزایش فرکانس کاهیده به علت شتاب بالاتر، اثر بیشتری در تولید نیروی رانش دارد. همچنین با افزایش نسبت منظری درصد کمتری از بال تحت تأثیر جریان‌های برگشتی از نوک بال قرار می­گیرند که این امر در افزایش نیروی رانش مؤثر است.

کلیدواژه‌ها


[1]  De Clercq K. M., De Kat R., Remes B., Van Oudheusden B. W. and Bijl H., Flow visualization and force measurements on a hovering flapping-wing MAV'DelFly II', 39th AIAA Fluid Dynamics Conference, pp. 22-25, 2009.
[2]  Paranjape A. A., Dorothy M. R., Chung S. -J., and Lee K. D., A Flight Mechanics-Centric Review of Bird-Scale Flapping Flight, International Journal of Aeronautical and Space Sciences, Vol. 13, pp. 267-281, 2012.
[3]  Pourtakdoust SH., S. Karimian Ali Abadi, K. Mazaheri and A. Ebrahimi, Experimental analysis of a aeroelastic flapping bird's and derivation of the extension curves, Journal of Aeronautical Engineering, Vol. 14, No. 1, pp 13-25, 2012. . (In Persian)
[4]  Kinsey GT., Dumas G., Lalande J., Ruel A., Méhut, P. Viarouge, J. Lemay, and Y. Jean, Prototype testing of a hydrokinetic turbine based on oscillating hydrofoils, Renewable Energy, vol. 36, pp. 1710-1718, 2011.
[5]  P. T. Ltd. (2011). http://www.pulsetidal.com, 2014/3.
[6] Freymuth P., Propulsive vortical signatures of plunging and pitching airfoils,in AIAA, Aerospace Sciences Meeting, 26 th, Reno, NV, 1988.
[7]  Koochesfahani M. M., Vortical patterns in the wake of an oscillating airfoil, AIAA journal, Vol. 27, 1989.
[8]  Lai J. and Platzer M., Jet characteristics of a plunging airfoil,AIAA journal, vol. 37, 1999.
[9]  Heathcote S., Wang Z., andGursul I., Effect of spanwise flexibility on flapping wing propulsion,Journal of Fluids and Structures, Vol. 24, pp. 183-199, 2008.
[10]         Bagheri A., Esmaeli A., Djavareshkian MH., Zamanifard AM,, Aerodynamic investigation and optimization of airfoil geometry and oscillation parameters in the plunging motion using RSM, Modares Mechanical Engineering, Vol. 14, No. 16, pp. 101-111, 2015. (In Persian)
[11]         R. E. Gordnier, S. Kumar Chimakurthi, C. E. S. Cesnik, and P. J. Attar, High-fidelity aeroelastic computations of a flapping wing with spanwise flexibility, Journal of Fluids and Structures, Vol. 40, pp. 86-104, 2013.
[12]         Chimakurthi S. K., Tang J., Palacios R., Cesnik C. E. S., and Shyy W., Computational aeroelasticity framework for analyzing flapping wing micro air vehicles, AIAA journal, vol. 47, pp. 1865-1878, 2009.
[13]         Visbal M., Yilmaz T. O. and Rockwell D., Three-dimensional vortex formation on a heaving low-aspect-ratio wing: Computations and experiments, Journal of Fluids and Structures, 2013.
[14]         Bagheri A., Three Dimensional Simulation of Plunging Wing With OpenFOAM, MSc Thesis, Department of Mechanical Engineering, Ferdowsi University, Mashhad, 2014. (In Persian)
[15]github.com/OpenFOAM/OpenFOAM-2.0.x/tree/master/applications/ solvers/incompressible/pimpleFoam, 2014.
[16]         Wuilbaut T. and Deconinck H., Improving Monotonicity of the 2 nd Order Backward Difference Time Integration Scheme by Temporal Limiting, Computational Fluid Dynamics 2008, ed: Springer, pp. 733-738, 2009.
[17]         Sarreshtehdari A., Varedy SR., heat transfer and fluid flow modeling by OpenFOAM, Shahrood industrial University Press, 2012. (In Persian)
[18]         www.openfoam.org/features/parallel-computing.php, 2014/3.