[1] Yue K., Zhang X., Yu F., Simultaneous Estimation of Thermal Properties of Living Tissue Using Noninvasive Method, Int J Thermophys, Vol. 28, No. 5, pp. 1470-1489, 2007.
[2] Huang C.-H., Huang C.-Y., An inverse problem in estimating simultaneously the effective thermal conductivity and volumetric heat capacity of biological tissue, Applied Mathematical Modelling, Vol. 31, No. 9, pp. 1785-1797, 2007.
[3] Partridge P.W., Wrobel L.C., A coupled dual reciprocity BEM/genetic algorithm for identification of blood perfusion parameters, International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 19, No. 1, pp. 25-38, 2009.
[4] Trucu D., Ingham D., Lesnic D., Inverse temperature-dependent perfusion coefficient reconstruction, International Journal of Non-Linear Mechanics, Vol. 45, No. 5, pp. 542-549, 2010.
[5] Loulou T., Scott E.P., An inverse heat conduction problem with heat flux measurements, International Journal for Numerical Methods in Engineering, Vol. 67, No. 11, pp. 1587-1616, 2006.
[6] Partridge P.W., Wrobel L.C., An inverse geometry problem for the localisation of skin tumours by thermal analysis, Engineering Analysis with Boundary Elements, Vol. 31, No. 10, pp. 803-811, 2007.
[7] Das K., Singh R., Mishra S.C., Numerical analysis for determination of the presence of a tumor and estimation of its size and location in a tissue, Journal of Thermal Biology, Vol. 38, No. 1, pp. 32-40, 2013.
[8] Das K., Mishra S.C., Estimation of tumor characteristics in a breast tissue with known skin surface temperature, Journal of Thermal Biology, Vol. 38, No. 6, pp. 311-317, 2013.
[9] Das K., Mishra S.C., Non-invasive estimation of size and location of a tumor in a human breast using a curve fitting technique, International Communications in Heat and Mass Transfer, Vol. 56, No. pp. 63-70, 2014.
[10] Das K., Mishra S.C., Simultaneous estimation of size, radial and angular locations of a malignant tumor in a 3-D human breast–A numerical study, Journal of Thermal Biology, Vol. 52, No. pp. 147-156, 2015.
[11] Ren Z., Liu J., Wang C., Jiang P., Boundary element method (BEM) for solving normal or inverse bio-heat transfer problem of biological bodies with complex shape, J. of Thermal Science, Vol. 4, No. 2, pp. 117-124, 1995.
[12] Loulou T., Scott E.P., Thermal dose optimization in hyperthermia treatments by using the conjugate gradient method, Numerical Heat Transfer: Part A: Applications, Vol. 42, No. 7, pp. 661-683, 2002.
[13] Zhang L., Dai W., Nassar R., A numerical method for optimizing laser power in the irradiation of a 3-D triple-layered cylindrical skin structure, Numerical Heat Transfer, Part A: Applications, Vol. 48, No. 1, pp. 21-41, 2005.
[14] Erhart K., Divo E., Kassab A., An evolutionary-based inverse approach for the identification of non-linear heat generation rates in living tissues using a localized meshless method, International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 18, No. 3/4, pp. 401-414, 2008.
[15] Yang C.-y., Boundary estimation of hyperbolic bio-heat conduction, International Journal of Heat and Mass Transfer, Vol. 54, No. 11, pp. 2506-2513, 2011.
[16] Majchrzak E., Paruch M., Identification of electromagnetic field parameters assuring the cancer destruction during hyperthermia treatment, Inverse Problems in Science and Engineering; Formerly Inverse Problems in Engineering, Vol. 19, No. 1, pp. 45-58, 2011.
[17] Lee H.-L., Lai T.-H., Chen W.-L., Yang Y.-C., An inverse hyperbolic heat conduction problem in estimating surface heat flux of a living skin tissue, Applied Mathematical Modelling, Vol. 37, No. 5, pp. 2630-2643, 2013.
[18] Yang C.-y., Boundary prediction of bio-heat conduction in a two-dimensional multilayer tissue, International Journal of Heat and Mass Transfer, Vol. 78, No. pp. 232-239, 2014.
[19] Yang C.-y., Determining the heat strength required in hyperthermia treatments, International Communications in Heat and Mass Transfer, Vol. 57, No. pp. 282-285, 2014.
[20] Lee H.-L., Chen W.-L., Chang W.-J., Yang Y.-C., Estimation of surface heat flux and temperature distributions in a multilayer tissue based on the hyperbolic model of heat conduction, Computer methods in biomechanics and biomedical engineering, Vol. 18, No. 14, pp. 1525-1534, 2015.
[21] Jalali A., Ayani M.-B., Baghban M., Simultaneous estimation of controllable parameters in a living tissue during thermal therapy, Journal of Thermal Biology, Vol. 45, No. pp. 37-42, 2014.
[22] Baghban M., Ayani M.B., Source term prediction in a multilayer tissue during hyperthermia, Journal of Thermal Biology, Vol. 52, No. pp. 187-191, 2015.
[23] Pennes H.H., Analysis of tissue and arterial blood temperatures in the resting human forearm, Journal of applied physiology, Vol. 1, No. 2, pp. 93-122, 1948.
[24] Bardati F., Gerosa G., On the solution of the non-linear bio-heat equation, Journal of biomechanics, Vol. 23, No. 8, pp. 791-798, 1990.
[25] Trobec R., Depolli M., Simulated temperature distribution of the proximal forearm, Computers in Biology and Medicine, Vol. 41, No. 10, pp. 971-979, 2011.
[26] Haemmerich D., dos Santos I., Schutt D.J., Webster J.G., Mahvi D.M., In vitro measurements of temperature-dependent specific heat of liver tissue, Medical engineering & physics, Vol. 28, No. 2, pp. 194-197, 2006.
[27] Ferziger J.H., Peric M., Computational methods for fluid dynamics, Springer Science & Business Media, 2012.
[28] Alifanov O.M., Inverse heat transfer problems, Springer Science & Business Media, 2012.
[29] Beck J.V., Blackwell B., Clair Jr C.R.S., Inverse heat conduction: Ill-posed problems, James Beck, 1985.
[30] M.N. Ozisik, Inverse heat transfer: fundamentals and applications, CRC Press, 2000.
[31] Gutiérrez Cabeza J.M., Martín García J.A., A. Corz Rodríguez, A sequential algorithm of inverse heat conduction problems using singular value decomposition, International Journal of Thermal Sciences, Vol. 44, No. 3, pp. 235-244, 2005.
[32] Beck J.V., Surface heat flux determination using an integral method, Nuclear Engineering and Design, Vol. 7, No. 2, pp. 170-178, 1968.
[33] Azimi P.G. A., Gholami S., Contact boundary condition estimation in fractional non-Fourier heat conduction problem using conjugate gradient method without/with adjoint problem, Modares Mechanical Engineering, Vol. 14, No. 6, pp. 22-28, 2014. (In Persian).
[35] Kaipio J., Somersalo E., Statistical and computational inverse problems, Springer Science & Business Media, 2006.