بررسی تجربی معیارهای مختلف قضاوت گرمایی نانوسیالات در رژیم جریان لایه ای در مبادله کن گرمایی پره‌دار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 فارغ التحصیل کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه تبریز، تبریز، ایران

2 استادیار، دانشکده مهندسی مکانیک، دانشگاه تبریز، تبریز، ایران

چکیده

این تحقیق به پیدا کردن یک معیار مناسب برای قضاوت گرمایی در مورد نانوسیالات اختصاص داده شده است. اهمیت این مسئله از گمراه کننده بودن، ادعای وجود انتقال گرمای بیشتر برای نانو سیال در مقایسه با سیال پایه، در صورت غفلت از اثرات هیدرولیک مانند افزایش افت فشار، ناشی می­شود. برای روشن شدن موضوع، دستگاه تجربی با توانایی ایجاد معیارهای عدد رینولدز ثابت و توان پمپاژ ثابت ساخته شده و رفتار گرمایی نانوسیال اکسید سیلیسیم / آب و آب مقطر در رژیم جریان لایه­ای و در ناحیه­ی در حال توسعه هیدرولیکی و گرمایی بررسی شده است. در این راستا، ضریب انتقال گرما در داخل مبادله­کن گرمایی لوله پره دار ارزیابی شده است، نتایج برای دماهای مختلف ورودی و غلظت های مختلف نانو سیال برای هر دو معیار عدد رینولدز ثابت و توان پمپاژ ثابت ارائه گردیده است. مطابق نتایج ارائه شده، میزان غلظت نانوذرات در سیال پایه تاثیر بسیار زیادی بر مقدار انحراف این دو معیار خواهد داشت به نحوی که هر قدر غلظت نانوسیال مورد استفاده بیشتر باشد، میزان اختلاف بین این دو معیار نیز بیشتر خواهد شد و لذا در این کار به دلیل غلظت پائین نانوسیال، استفاده از هریک از معیار ها تفاوت قابل توجهی در نتایج بدست آمده ایجاد نکرده است.

کلیدواژه‌ها


 [1]   Li Q., Xuan Y., Convective heat transfer and Flow characteristics of Cu-     water nanofluid, Sci. China E 45, 408, 2002.
[2]   Xuan Y., Li Q., Investigation on convective heat transfer and flow features of nanofluids, ASME J. Heat Transfer 125, 151, 2003.
[3]   Yang Y., Zhang Z.G., Grulke E.A., Anderson W.B., Wu G., Heat transfer propertiesof nanoparticle-in-fluid dispersions (nanofluids) in laminar flow, InternationalJournal of Heat and Mass Transfer 48, 1107–1116, 2005.
[4] Zeinali Heris S., Nasr Esfahany M., Etemad S. Gh., Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube, International Journal of Heat and Fluid Flow 28, 203–210, 2007.
[5]   Anoop K.B., Sundararajan T., Sarit K. Das, Effect of particle size on the convective heat transfer  in nanofluid  in  the developing region, International Journal of Heat and Mass Transfer 52. 2189–2195, 2009.
[6] Hwang K.S., Jang S.P., Choi S.U.S., Flow and convective heat transfercharacteristics of water-based Al2O3 nanofluids in fully developed laminarflow regime, International Journal of Heat and Mass Transfer 52, 193–199, 2009.
[7]  Esmaeilzadeh E., Almohammadi H., Nasiri Vatan Sh., Omrani A.N., Experimental investigation of hydrodynamics and heat transfer characteristics of g-Al2O3/water under laminar flow inside a horizontal tube,  International Journal of Thermal Sciences 63, 31-37, 2013.
[8]  Esmaeilzadeh E., Almohammadi H., Nokhosteen A., Motezaker A., Omrani A.N., Study on heat transfer and friction factor characteristics of g-Al2O3/water through circular tube with twisted tapeinserts with different thicknesses, International Journal of Thermal Sciences 82,  72-83. 2014.
[9]  Sébastien Ferrouillat, André Bontemps, Olivier Poncelet , Olivier Soriano, Jean-Antoine Gruss, Influence of nanoparticle shape factor on convective heat transfer and energetic performance of water-based SiO2 and ZnO nanofluids, Applied Thermal Engineering 51, 839-851, 2013.
[11] Azmi W.H., Sharma K.V., Sarma P.K., Rizalman Mamat, Shahrani Anuar, V. Dharma Rao, Experimental determination of turbulent forced convection heat transfer and friction factor with SiO2 nanofluid" Experimental Thermal and Fluid Science 51, 103–111, 2013.
[11] Rabienataj Darzi A.A., Mousa Farhadi, Kurosh Sedighi, Rouzbeh Shafaghat, Kaveh Zabihi Experimental investigation of turbulent heat transfer and flow characteristics of SiO2/water nanofluid within helically corrugated tubes, International Communications in Heat and Mass Transfer 39, 1425–1434, 2012.
[12] Javadi F.S., Sadeghipour S., Saidur R., BoroumandJazi G., Rahmati B., Elias M.M., Sohel M.R., The effects of nanofluid on thermophysical properties and heat transfer characteristics of a plate heat exchanger, International Communications in Heat and Mass Transfer 44, 58–63, 2013.
[13] Ebrahimi M., Farhadi M., Sedighi K., Akbarzade S., Experimental Investigation of Force Convection Heat Transfer in a Car Radiator Filled with SiO2-water Nanofluid, IJE TRANSACTIONS B: Applications Vol. 27, No. 2, (February) 333-340, 2014.
[14] Yu W., France D.M., Timofeeva E. V., Singh D., and Routbort J. L. Thermophysical property-related comparison criteria for nanofluid heat transfer enhancement in turbulent flow, APPLIED PHYSICS LETTERS 96, 213109, 2010.
 [15] Ehsan B., Haghighi, Mohsin Saleemi, Nader Nikkam, Zahid Anwar, Itziar Lumbreras ,Mohammadreza Behi, Seyed A. Mirmohammadi , Heiko Poth , Rahmatollah Khodabandeh Muhammet S. Toprak , Mamoun Muhammed, Bjِrn Palm, "Cooling performance of nanofluids in a small diameter tube, Experimental Thermal and Fluid Science 49, 114–122, 2013.
[16] Nader Nikkama, Ehsan B., Haghighi, Mohsin Saleemi, Mohammadreza Behi, Rahmatollah Khodabandeh, Mamoun Muhammed, Björn Palm, Muhammet Toprak S., Experimental study on preparation and base liquid effect on  thermo-physical and heat transport characteristics of    α-SiC nanofluids" International Communications in Heat and Mass Transfer Volume 55, July 2014, Pages 38–44 .
[17] INPBE, A benchmark study on the thermal conductivity of nanofluids, JOURNAL OF APPLIED PHYSICS 106, 094312 2009.
[18] E. V., Gavrilov A. N., McCloskey J. M. and Tolmachev Y. V., Thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and theory, PHYSICAL REVIEW E 76, 061203, 2007.
[19] Sider E.N. and Tate,G.E.,.Heat transfer and pressure drop in liquids in tubes.Ind.Eng.chem., Vol.28,1429-1453, 1936.
[20] Kays W.M. , Crawford M.E. . Convective Heat and Mass Transfer. McGrawHill, New York , 1980.
[21] Holman J.P., Experimental Methods for Engineers, fifth ed. McGraw-Hill, New York, 1989.
[22] Beckwith T.G., Marangoni R.D., Lienhard J.H., Mechanical Measurements, fifthed., AddisoneWesley Publishing Company, New York, 1990.
[23] Rea U., McKrell T., Hu L., J.Buongior no, Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids, International Journal of Heat and Mass Transfer 52, 2042–2048, 2009.
[24] Sajedi R., Jafari M., Taghilou M., An experimental study on the effect of conflict measurement criteria for heat transfer enhancement in nanofluidics , Powder Technology 297, 448–456, 2016.