مطالعه تجربی اثر مقدار کرنش اعمالی در هر مرحله از فرآیند اکستروژن در کانال‌های هم مقطع زاویه دار بر روند تکامل استحکام مس خالص تجاری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مربی، دانشگاه آزاد اسلامی، واحد بیرجند، باشگاه پژوهشگران جوان و نخبگان، بیرجند، ایران

2 مربی، گروه مهندسی مکانیک، دانشگاه آزاد اسلامی، واحد بیرجند، بیرجند، ایران

3 استاد، گروه مهندسی مکانیک، دانشکده مهندسی، دانشگاه بیرجند، بیرجند، ایران

چکیده

هدف از این مطالعه بررسی تأثیر مقدار کرنش اعمالی در هر مرحله از فرآیند اکستروژن در کانال­های هم مقطع زاویه دار (ECAP) بر روند تکامل استحکام  مکانیکی (دستیابی به استحکام­های بیشتر) مس خالص تجاری تولیدشده با این روش است. از آنجایی که زاویه­ی برخورد کانال­های هم مقطع، عامل اساسی و تعیین کننده­ی مقدار کرنش اعمالی است که در هر مرحله از فرآیند ECAP به وقوع می­پیوند، دو قالب یک پارچه با زاویه­ی انحنای خارجی °37 ~و زوایای برخورد ( ) °90 و°110 طراحی و ساخته شدند. کرنش اعمالی طی هر مرحله از فرآیند ECAP توسط قالب °110  در مقایسه با قالب °90  به مقدار 25 درصد کمتر است. مس خالص تجاری تحت شرایط یکسان و حداکثر تا 8 مرحله در دمای محیط درون هر دو قالب تحت فرآیند ECAP قرار گرفته و سپس خوصیات مکانیکی حاصل شده توسط آزمون سختی و فشار در دمای محیط اندازه گیری و تغییرات آنها گزارش شده است. نتایج حاصله نشان دادند که، حداکثر سختی و استحکام ماده­ی تولیدشده توسط قالب °90  با اعمال پنج مرحله فرآیند ECAP به‌دست‌آمده و مقدار آن به ترتیب برابر HB9/74 و MPa390 اندازه گیری گردید. از طرفی خواص مکانیکی مطلوب تری در ماده­ی تولیدشده توسط قالب °110  مشاهده شده به‌طوری‌که حداکثر سختی برابر HB5/77 (حدود 51 درصد نمونه اولیه) و استحکام برابر MPa424 (حدود 63 درصد نمونه اولیه) پس از 8 مرحله انجام فرآیند ECAP بر روی مس خالص تجاری به دست آمد. با توجه به نتایج به‌دست‌آمده، می­توان اذعان داشت که با کاهش کرنش اعمالی به میزان 25 درصد در هر مرحله از فرآیند ECAP و افزایش مراحل آن، می­توان به استحکام­های بیشتر  در مس خالص تجاری دست یافت.

کلیدواژه‌ها


Hansen N.. Hall–Petch relation and boundary strengthening, Scripta Materialia, Vol.51, pp: 801–806, 2004.
[1]     Afsari A., Ranaei M.A., Equal Channel Angular Pressing to Produce Ultrafine Pure Copper with Excellent Electrical and Mechanical Properties, International Journal of Nanoscience and Nanotechnology, Vol. 10, No. 4, pp. 215-222, 2014.
[2]     Yang Gon Kim, Byoungchul Hwang, Sunghak Lee, Dynamic deformation and fracture behavior of ultra-fine-grained pure copper fabricated by equal channel angular pressing, Materials Science and Engineering: A, Vol. 504, Issues 1–2, pp. 163–168, 2009.
[3]     Ranjbar Bahadori Sh., Dehghani K., Bakhshandeh F., Microstructure, texture and mechanical properties of pure copper processed by ECAP and subsequent cold rolling”, Materials Science and Engineering: A, Vol. 583, pp: 36-42, 2013.
[4]     Segal V.M., Materials processing by simple shear, Materials Science and Engineering A, Vol.197, pp: 157 164, 1995.
[5]     Iwahashi Y., Wang J., Horita Z., Nemoto M., Langdon T.G., Principle of equal-channel angular pressing for the processing of ultra-fine grained materials, Scripta Materialia, Vol. 35, pp: 143-146, 1996.
[6]     Lugo N., Llorca N., Cabrera J.M., Horita Z., Microstructures and mechanical properties of pure copper deformed severely by equal-channel angular pressing and high pressure torsion, Materials Science and Engineering A, Vol. 477, pp: 366–371, 2008.
[7]     Stepanov N.D., Kuznetsov A.V., Salishchev G.A., Raab G.I., Valiev R.Z.. Effect of cold rolling on microstructure and mechanical properties of copper subjected to ECAP with various numbers of passes, Materials Science and Engineering A, 554, pp: 105– 115, 2012.
[8]     Asiyeh Habibi, Mostafa Ketabchi, Enhanced properties of nano-grained pure copper by equal channel angular rolling and post-annealing, Materials and Design, Vol.34, pp: 483–487, 2012.
[9]     Qing-Wei Jiang, Xiao-Wu Li. Effect of pre-annealing treatment on the compressive deformation and damage behavior of ultrafine-grained copper, Materials Science and Engineering A, Vol.546, pp: 59– 67, 2012.
[10]  Purcek G., Yanar H., Demirtas M., Alemdag Y., Shangina D.V., Dobatkin S.V., Optimization of strength, ductility and electrical conductivity of Cu–Cr–Zr alloy by combining multi-route ECAP and aging, Materials Science and Engineering A, Vol.649, pp: 114–122, 2016.
[11]  Salimyanfard F., Toroghinejad M.R., Ashrafizadeh F., Hoseini M., Szpunar J. A., Investigation of texture and mechanical properties of copper processed by new route of equal channel angular pressing, Materials and Design, Vol.44, pp: 374–381, 2013.
[12]  Ya Li Wang, Rimma Lapovok, Jing Tao Wang, Yuan Shen Qi, Yuri Estrin, Thermal behavior of copper processed by ECAP with and without back pressure, Materials Science & Engineering A, Vol.628, pp:21–29, 2015.
[13]   Dumoulin S., Roven H.J.,  Werenskiold J.C., Valberg H.S., Finite element modeling of equal channel angular pressing: Effect of material properties, friction and die geometry”, Materials Science and Engineering: A, Vol. 410–411, pp: 248–251, 2005.
[14]   Djavanroodi F.,  Ebrahimi M., Effect of die channel angle, friction and back pressure in the equal channel angular pressing using 3D finite element simulation, Materials Science and Engineering: A, Vol. 527, No 4–5, pp: 1230–1235, 2010.
[15]  Kiyotaka Nakashima, Zenji Horita, Minoru Nemoto, Terence G. Langdon, Influence of channel angle on the development of ultrafine grains in equal-channel angular pressing, Acta Materialia, Vol. 46, No 5, pp: 1589–1599, 1998.
[16]  Qu S., An X.H., Yang H.J., Huang C.X., Yang G., Zang Q.S.,  Wang Z.G., Wu S.D., Zhang Z.F., Microstructural evolution and mechanical properties of Cu–Al alloys subjected to equal channel angular pressing, Acta Materialia, Vol. 57, pp. 1586-1601, 2009.
[17]  Dalla Torre F.H., Pereloma E.V., Davies C.H.J., Strain hardening behaviour and deformation kinetics of Cu deformed by equal channel angular extrusion from 1 to 16 passes, Acta Materialia, Vol. 54, pp: 1135–1146, 2006.
[18]  Wang Y.M., MA E., Three strategies to achieve uniform tensile deformation in a nanostructured metal, Acta Materialia, Vol. 52, pp.1699–1709., 2004.
[19]  Dalla Torre F., Lapovok R., Sandlin J., Thomson P.F., Davies C.H.JPereloma., E.V., Microstructures and properties of copper processed by equal channel angular extrusion for 1–16 passes, Acta Materialia, Vol. 52, pp.4819-4832, 2004.
[20]  Shih M.H., Yu C.Y., Kao P.W., Chang C.P., Microstructure and flow stress of copper deformed to large plastic strains, Scripta Materialia, Vol. 45, pp. 793-799, 2001.Xue Q., Beyerlein I.J., Alexander D.J., Gray III G.T., Mechanisms for initial grain refinement in OFHC copper during equal channel angular pressing, Acta Materialia, Vol. 55, 2007, pp: 655–668.
[21]  Zhu C.F., Du F.P., Jiao Q.Y., Wang X.M., Chen A.Y., Liu F., Pan D., Microstructure and strength of pure Cu with large grains processed by equal channel angular pressing, Materials and Design, Vol. 52, pp. 23–29, 2013.
[22]  Higuera-Cobos O.F., Cabrera J.M., Mechanical, microstructural and electrical evolution of commercially pure copper processed by equal channel angular extrusion, Materials Science & Engineering A, Vol. 571, pp. 103–114, 2013.
[23]  Habibi A., Ketabchi M., Eskandarzadeh M., Nano-grained pure copper with high-strength and high-conductivity produced by equal channel angular rolling process, Journal of Materials Processing Technology, Vol. 211, pp.1085–1090, 2011.
[24] Sakai T., Belyakov A., Kaibyshev R., Miura H., Jonas J. J., Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Progress in Materials Science, Vol. 60, pp. 130-207, 2014.