شبیه‌سازی رفتار حرارتی یک گلخانه یک‌طرفه با استفاده از مدل دینامیکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی مکانیزاسیون کشاورزی، گروه مهندسی بیوسیستم، دانشگاه تبریز

2 دانشیار، گروه مهندسی بیوسیستم، دانشگاه تبریز، تبریز، ایران

3 استادیار، گروه مهندسی مکانیک، دانشگاه تبریز، تبریز، ایران

4 استادیار، گروه مهندسی باغبانی، دانشگاه تبریز، تبریز، ایران

چکیده

یکی از بهترین اقدامات جهت ایجاد شرایط بهینه رشد گیاهان در داخل گلخانه ارائه مدل‌های دقیق برای کنترل شرایط داخلی گلخانه است. در این مطالعه با استفاده از مدل ریاضی میزان تابش کل خورشیدی (مستقیم، پخش و بازتابش شده از زمین) عبوری از پوشش یک گلخانه یک‌طرفه بدون گیاه واقع در دانشگاه تبریز محاسبه شد. همچنین با توسعه یک مدل دینامیکی انتقال گرما، دماهای داخلی گلخانه شامل دمای هوای گلخانه، دمای سطح خاک و دمای سطح داخلی گلخانه پیش‌بینی شد. ورودی‌های مدل شامل پارامترهای هواشناسی اندازه‌گیری شده و خواص ترموفیزیکی اجزای گلخانه بود. نتایج نشان داد که تبادل گرمایی سطح خاک بیشترین اثر را بر تغییرات دمایی هوای داخل گلخانه دارد. مقایسه نتایج حاصل از مدل با داده‌های اندازه‌گیری نشان داد برای هوای داخلی گلخانه، بین مقادیر اندازه‌گیری شده و پیش‌بینی شده همبستگی بالایی وجود دارد. ضریب همبستگی و میانگین درصد خطا برای این مدل به ترتیب برابر با  99/0 و 62/3-% به‌دست آمد. همچنین میانگین درصد خطا برای این داده‌ها 62/3-% به‌دست آمد نتایج همچنین نشان داد بخش اعظم تابش ورودی به داخل گلخانه از طریق تابش و همرفت به بیرون تلف می‌شود.

کلیدواژه‌ها


[1]       Joudi K. A., and Farhan A. A., A dynamic model and an experimental study for the internal air and soil temperatures in an innovative greenhouse, Energy Convers Manage, Vol. 91, pp. 76–82, 2015.
[2]       Mashonjowa E., Ronsse F., Milford J. R., and Pieters JG., Modelling the thermal performance of a naturally ventilated greenhouse in Zimbabwe using a dynamic greenhouse climate model, Sol Energy, Vol. 91, pp. 381–393, 2013.
[3]       Abdel-Ghany A. M., and Al-Helal I. M., Solar energy utilization by a greenhouse: General relations, Renew Energy, Vol. 36, pp. 189–196, 2011.
[4]       Trigui M., Barrington S., and Gauthier L., A strategy for greenhouse climate control. Part I: model development, J Agric Engine Res, Vol. 78, pp. 407–413, 2001.
[5]       Abdel-Ghany A. M., and Kozai T., Dynamic modeling of the environment in a naturally ventilated, fog-cooled greenhouse, Renew Energy, vol. 31, pp. 1521–1539, 2006.
[6]       Sengar S. H., and Kothari S., Thermal modeling and performance evaluation of arch shape greenhouse for nursery raising, Afr J Math Comput Sci Res, Vol. 1, pp. 1–9, 2008.
[7]       Sethi V. P., and Sharma S. K., Thermal modeling of a greenhouse integrated to an aquifer coupled cavity flow heat exchanger system, Sol Energy, Vol. 81, pp. 723–741, 2007.
[8]       Sethi V. P., On the selection of shape and orientation of a greenhouse: Thermal modeling and experimental validation, Sol Energy, vol. 83, pp. 21–38, 2009.
[9]       Singh R. D., and Tiwari G.N., Energy conservation in the greenhouse system: A steady state analysis, Energy, vol. 35, pp. 2367–2373, 2010.
[10]    Singh G., Singh P. P., Lubana P.P. S., and Singh K. G., Formulation and validation of mathematical model of microclimate in a greenhouse, Renew Energy, Vol. 31, pp. 1541–1560, 2006.
[11]    Ghosal M. K., and Tiwari G. N., Modeling and parametric studies for thermal performance of an earth to air heat exchanger integrated with a greenhouse, Energy Convers Manage, Vol. 47, pp. 1779–1798, 2006.
[12]    Tanwanichkul B., Thepa S., and Rordprapat W., Thermal modeling of the forced convection Sandwich Greenhouse drying system for rubber sheets, Energy Convers Manage, Vol. 74, pp. 511–523, 2013.
[13]    Singh R. D., and Tiwari G. N., Thermal heating of controlled environment greenhouse: a transient analysis, Energy Convers Manage, vol. 41, pp. 505–522, 2000.
[14]    Tiwari G. N., Din M., Shrivastava N. S. L., Jain D., and Sodha M. S., Evaluation of solar fraction (Fn) for north wall of a controlled environment greenhouse: an experimental validation, Int J Energy Res, Vol. 26, pp. 203–215, 2002.
[15]    Gupta R., Tiwari G. N., Kumar A., and Gupta Y., Calculation of total solar fraction for different orientation of greenhouse using 3D-shadow analysis in Auto-CAD, Energy Buildings Vol. 47, pp. 27–34, 2012.
[16]    Chou S. K., Chau K. J., Ho J. C., and Ooi C. L., On the study of an energy-efficient greenhouse for heating and dehumidification application, Appl Energy, Vol. 77, pp. 355–373, 2004.
[17]    Duffie J. A., and Beckman W. A., Solar Engineering of Thermal Processes, fourth edition'', John Wiley & Son, New Jersey, 2013.
[18]    Gupta A., and Tiwari, G. N., Computer model and its validation for prediction of storage effect of water mass in a greenhouse: a transient analysis, Energy Convers Managet Vol. 43, pp. 2625–2640, 2002.
[19]    Mobtaker H. G., Ajabshirchi Y., RanjbarS. F., Matloobi M., Amini C., Determining of total solar fraction and solar fraction for north wall of different-shaped greenhouses using Auto–CAD software, ISESCO J Sci Tech. In Press.