[1] Joudi K. A., and Farhan A. A., A dynamic model and an experimental study for the internal air and soil temperatures in an innovative greenhouse, Energy Convers Manage, Vol. 91, pp. 76–82, 2015.
[2] Mashonjowa E., Ronsse F., Milford J. R., and Pieters JG., Modelling the thermal performance of a naturally ventilated greenhouse in Zimbabwe using a dynamic greenhouse climate model, Sol Energy, Vol. 91, pp. 381–393, 2013.
[3] Abdel-Ghany A. M., and Al-Helal I. M., Solar energy utilization by a greenhouse: General relations, Renew Energy, Vol. 36, pp. 189–196, 2011.
[4] Trigui M., Barrington S., and Gauthier L., A strategy for greenhouse climate control. Part I: model development, J Agric Engine Res, Vol. 78, pp. 407–413, 2001.
[5] Abdel-Ghany A. M., and Kozai T., Dynamic modeling of the environment in a naturally ventilated, fog-cooled greenhouse, Renew Energy, vol. 31, pp. 1521–1539, 2006.
[6] Sengar S. H., and Kothari S., Thermal modeling and performance evaluation of arch shape greenhouse for nursery raising, Afr J Math Comput Sci Res, Vol. 1, pp. 1–9, 2008.
[7] Sethi V. P., and Sharma S. K., Thermal modeling of a greenhouse integrated to an aquifer coupled cavity flow heat exchanger system, Sol Energy, Vol. 81, pp. 723–741, 2007.
[8] Sethi V. P., On the selection of shape and orientation of a greenhouse: Thermal modeling and experimental validation, Sol Energy, vol. 83, pp. 21–38, 2009.
[9] Singh R. D., and Tiwari G.N., Energy conservation in the greenhouse system: A steady state analysis, Energy, vol. 35, pp. 2367–2373, 2010.
[10] Singh G., Singh P. P., Lubana P.P. S., and Singh K. G., Formulation and validation of mathematical model of microclimate in a greenhouse, Renew Energy, Vol. 31, pp. 1541–1560, 2006.
[11] Ghosal M. K., and Tiwari G. N., Modeling and parametric studies for thermal performance of an earth to air heat exchanger integrated with a greenhouse, Energy Convers Manage, Vol. 47, pp. 1779–1798, 2006.
[12] Tanwanichkul B., Thepa S., and Rordprapat W., Thermal modeling of the forced convection Sandwich Greenhouse drying system for rubber sheets, Energy Convers Manage, Vol. 74, pp. 511–523, 2013.
[13] Singh R. D., and Tiwari G. N., Thermal heating of controlled environment greenhouse: a transient analysis, Energy Convers Manage, vol. 41, pp. 505–522, 2000.
[14] Tiwari G. N., Din M., Shrivastava N. S. L., Jain D., and Sodha M. S., Evaluation of solar fraction (Fn) for north wall of a controlled environment greenhouse: an experimental validation, Int J Energy Res, Vol. 26, pp. 203–215, 2002.
[15] Gupta R., Tiwari G. N., Kumar A., and Gupta Y., Calculation of total solar fraction for different orientation of greenhouse using 3D-shadow analysis in Auto-CAD, Energy Buildings Vol. 47, pp. 27–34, 2012.
[16] Chou S. K., Chau K. J., Ho J. C., and Ooi C. L., On the study of an energy-efficient greenhouse for heating and dehumidification application, Appl Energy, Vol. 77, pp. 355–373, 2004.
[17] Duffie J. A., and Beckman W. A., Solar Engineering of Thermal Processes, fourth edition'', John Wiley & Son, New Jersey, 2013.
[18] Gupta A., and Tiwari, G. N., Computer model and its validation for prediction of storage effect of water mass in a greenhouse: a transient analysis, Energy Convers Managet Vol. 43, pp. 2625–2640, 2002.
[19] Mobtaker H. G., Ajabshirchi Y., RanjbarS. F., Matloobi M., Amini C., Determining of total solar fraction and solar fraction for north wall of different-shaped greenhouses using Auto–CAD software, ISESCO J Sci Tech. In Press.