شبیه‌سازی انتقال گرما و توزیع دما روی دیسک‌های دوار موتور جت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، مجتمع دانشگاهی مکانیک و هوافضا، دانشگاه صنعتی مالک اشتر، اصفهان، ایران

2 دانشجو، مجتمع دانشگاهی مکانیک و هوافضا، دانشگاه صنعتی مالک اشتر، اصفهان، ایران

چکیده

دیسک‌های دوار در توربین‌های گاز زمینی و هوایی اعم از توربوجت، توربوفن، توربوپراپ و توربوجت در دماهای بالا، گرادیان‌های گرمایی شدید و سرعت‌های زاویه‌ای بالا کار می‌کنند. این شرایط کاری به ترتیب منجر به کاهش مقاومت ماده سازنده دیسک، افزایش سطح تنش‌های حرارتی و ایجاد نیروی گریز از مرکز بزرگ و به دنبال آن افزایش سطح تنش‌های شعاعی و محیطی می‌شود. بنابراین تحلیل حرارتی دیسک جهت ایجاد توزیع دما و انتقال گرمای مناسب با ایجاد مکانیزم خنک‌کاری کارا از اهمیت خاصی برخوردار است. در این تحقیق، مساله دیسک چرخان مطابق با واقعیت مدل می‌شود. مساله شامل دیسک و حفره چرخان به‌منظور خنک‌کاری سطح دیسک در نظر گرفته شده، سپس به کمک حل همزمان معادلات جریان و انرژی در نرم‌افزار Fluent به‌صورت عددی شبیه‌سازی‌ شده است. نتایج توزیع سرعت، انتقال حرارت و توزیع دما به‌تفصیل توضیح داده شده و کانتورهای توزیع دما و تقریب چندجمله‌ای برای توصیف دمای دیسک بر حسب شعاع آن برای حالت‌های مختلف پرواز استخراج می‌شوند. همچنین یک تحلیل جامع روی پارامترهای مؤثر بر انتقال گرما و توزیع دمای مساله ارائه می‌شود. تقریب چندجمله‌ای پروفیل‌های دمای دیسک بر حسب سرعت دورانی امکان پیش‌بینی توزیع دمای دیسک را در هر سرعت چرخشی فراهم می‌کند. همچنین بر اساس نتایج این تحقیق، بحرانی‌ترین قسمت دیسک، شعاع بیرونی آن که تحت بیشترین تنش حرارتی-مکانیکی قرار دارد، تشخیص داده شد.

کلیدواژه‌ها


 [1] Giampaolo T., The gas turbine handbook. Principles and practices, The Fairmont Press, Inc., 2003.
[2] فرشی بهروز، فائزی محمدحسین، بهینه سازی دیسک غیر همگن دوار به روش غیر گرادیانی، مجله فنی و مهندسی مدرس- مکانیک، شماره 37، پاییز 1388.
[3] Brown A., and Markland E., Temperature distribution in cooled turbine disks, International Journal of Heat and Mass Transfer, Vol. 7, No. 3, pp. 327-332, 1964.
[4] Gladden H. J., Air cooling of disk of a solid integrally cast turbine rotor for an automotive gas turbine, NASA technical memorandum, 1977.
[5] Bose T., Chakravarthy S., Goldberg U., Palaniswamy S., and Peroomian O., CFD analysis of turbine rotating shaft and disk, AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 35th, Los Angeles, CA. 1999.
[6] Sun Z., Chew J. W., Hills N. J., Volkov K. N., and Barnes C. J., Efficient finite element analysis/computational fluid dynamics thermal coupling for engineering applications, Journal of turbomachinery, Vol. 132, No. 3, pp. 031016, 2002.
[7] Beretta G. P., and Malfa E., Flow and heat transfer in cavities between rotor and stator disks, International journal of heat and mass transfer, Vol. 46, No. 15, pp. 2715-2726, 2003.
[8] Astarita T., and Cardone G., Convective heat transfer on a rotating disk with a centered impinging round jet, International Journal of Heat and Mass Transfer, 51-7, 1562-1572, 2008:
[9] Howey D. A., Holmes A. S., and Pullen K. R., Radially resolved measurement of stator heat transfer in a rotor-stator disk system, International journal of heat and mass transfer, 53.1, 491-501, 2010.
[10] Abbasi A., Daudpoto J., Shah S., and Mughal G., Investigations of Buoyancy Effects in Sealed Rotating Cavity at different Operating Conditions, Sindh University Research Journal (Science Series), Vol. 45, No. 2, 2013.
[11] Harmand S., Pellé J., Poncet S., and Shevchuk I. V., Review of fluid flow and convective heat transfer within rotating disk cavities with impinging jet, International Journal of Thermal Sciences, Vol. 67, pp. 1-30, 2013.
[12] Luo X., et al., Experimental investigation of pressure loss and heat transfer in a rotor–stator cavity with two outlets, International Journal of Heat and Mass Transfer, 78, 311-320, 2014.
[13] Luo, X., et al. Experimental investigation of heat transfer in a rotor–stator cavity with cooling air inlet at low radius, International Journal of Heat and Mass Transfer, 76, 65-80, 2014.
 [14] McElroy D., Williams R., Moore J., Graves R., And Weaver F., The physical properties of Inconel alloy 718 from 300 to 1000 K, Thermal Conductivity 15, Springer, pp. 149-151, 1978.
[15] Prabhakar R., CFD Analysis of Newtonian Fluid Flow Phenomena over a Rotating Cylinder, PhD diss., National Institute of Technology, Rourkela, 2012.
[16] Elghnam Reda I., Experimental and numerical investigation of heat transfer from a heated horizontal cylinder rotating in still air around its axis, Ain Shams Engineering Journal, 5.1, 177-185, 2014.
[17] Barack W., and Domas P., An improved turbine disk design to increase reliability of aircraft jet engines, NASA Lewis Research Center, Contract NAS3-18564, 1976.
[18] Cardone G., Astarita T., and Carlomagno G., Heat transfer measurements on a rotating disk, International Journal of Rotating Machinery, Vol. 3, No. 1, pp. 1-9, 1997.
[19] Sweet J., Roth E., and Moss M., Thermal conductivity of Inconel 718 and 304 stainless steel, International journal of thermophysics, Vol. 8, No. 5, pp. 593-606, 1977.
[20] Kadoya K., Matsunaga N., and Nagashima A. Viscosity and thermal conductivity of dry air in the gaseous phase, Journal of physical and chemical reference data, Vol. 14, No. 4, pp. 947-970, 1985.