Lin Y. C., Li Q. F., Xia Y. C., and Li L. T., A phenomenological constitutive model for high temperature flow stress prediction of Al–Cu–Mg alloy, Mater.Sci.Eng. A, Vol. 534, pp. 654-662, 2012.
Malas J., Venugopal S., and Seshacharyulu T., Effect of microstructural complexity on the hot deformation behavior of aluminum alloy 2024, Mater.Sci.Eng. A, Vol. 368, No 1-2, pp. 41-47, 2004.
|
RezaeiAshtiani H.R., Parsa M., and Bisadi H., Constitutive equations for elevated temperature flow behavior of commercial purity aluminum, Mater.Sci.Eng. A, Vol. 545, pp. 61-67, 2012.
|
Guo J. H., Zhao S. D., Yan G. H., and Wang Z. B., Novel flow stress model of AA 4343 aluminium alloy under high temperature deformation, Mater.Sci.and Tech, Vol. 29, No. 2, pp. 197-203, 2013.
|
Lin Y., Xia Y. C., Chen X. M., and Chen M. S., Constitutive descriptions for hot compressed 2124-T851 aluminum alloy over a wide range of temperature and strain rate, Comput. Mater. Sci., Vol. 50, No. 1, pp. 227-233, 2010.
|
Shi C., Mao W., and Chen X. G., "Evolution of activation energy during hot deformation of AA7150 aluminum alloy", Mater.Sci.Eng. A, Vol. 571, pp. 86-91, 2013.
|
Lin Y., and Chen X. M., A critical review of experimental results and constitutive descriptions for metals and alloys in hot working, Mater. Des., Vol. 32, No. 4, pp. 1733-1759, 2011.
|
Shin H., and Kim J. B., A Phenomenological Constitutive Equation to Describe Various Flow Stress Behaviors of Materials in Wide Strain Rate and Temperature Regimes, J. Eng. Mater. Tech, Vol. 132, No. 2, pp. 1-6, 2010.
|
Rusinek A., and Rodriguez-Martinez J., A. Arias, A thermo-viscoplastic constitutive model for FCC metals with application to OFHC copper, Inter. J. Mech. Sci., Vol. 52, No. 2, pp. 120-135, 2010.
|
Lin Y. C., Zhang J., and Zhong J., Application of neural network to predict the elevated temperature flow behavior of a low alloy steel, Comput. Mater.Sci., Vol. 43, No. 4, pp. 752-758, 2008.
|
Sheikh H., and Serajzadeh S., Estimation of flow stress behavior of AA5083 using artificial neural networks with regard to dynamic strain ageing effect, J. Mater. Process. Tech., Vol. 196, No. 1-3, pp. 115-119, 2008.
|
Guoliang J., Fugue L., Qinghua L., Huiqu L., and Zhi L., Prediction of the hot deformation behavior for Aermet100 steel using an artificial neural network, Comput. Mater.Sci., Vol. 48, No. 3, pp. 626-632, 2010.
|
Mandal S., Sivaprasad P., Venugopal S., And Murthy K., Artificial neural network modeling to evaluate and predict the deformation behavior of stainless steel type AISI 304L during hot torsion, Applied Soft Comput., Vol. 9, No. 1, pp. 237-244, 2009.
|
Mirzaei A., Zarei-Hanzaki A., Pishbin M. H., Imandoust A., and Khoddam S., Evaluating the Hot Deformation Behavior of a Super-Austenitic Steel Through Microstructural and Neural Network Analysis, J. Mater.Eng.Perf.,Vol. 24, No. 6, pp. 1-10, 2015.
|
Reddy N. S., Lee Y. H., Park C. H., and Lee C. S., Prediction of flow stress in Ti–6Al–4V alloy with an equiaxed microstructure by artificial neural networks, Mater.Sci.Eng. A, Vol. 492, No. 1-2, pp. 276-282, 2008.
|
Qin Y. J., Pan Q. L., He Y. B., Li W. B., Liu X. Y., and Fan X., Artificial Neural Network Modeling to Evaluate and Predict the Deformation Behavior of ZK60 Magnesium Alloy During Hot Compression, Mater. Manu.Process., Vol. 25, pp. No. 7, 539-545, 2010.
|
Han Y., Qiao G., Sun J., and Zou D., A comparative study on constitutive relationship of as-cast 904L austenitic stainless steel during hot deformation based on Arrhenius-type and artificial neural network models, Comput. Mater .Sci., Vol. 67, pp. 93-103, 2013.
|
Xiao X., Liu G., Hu B., Zheng X., Wang L., Chen S., and Ullah A., A comparative study on Arrhenius-type constitutive equations and artificial neural network model to predict high-temperature deformation behaviour in 12Cr3WV steel, Comput. Mater.Sci., Vol. 62, pp. 227-234, 2012.
|
Li H. Y., Wang X. F., Wei D. D., Hu J. D., and Li Y. H., A comparative study on modified Zerilli–Armstrong, Arrhenius-type and artificial neural network models to predict high-temperature deformation behavior in T24 steel, Mater.Sci.Eng. A, Vol. 536, pp. 216-222, 201.
|
Chai R. X., Guo C., and Yu L., Two flowing stress models for hot deformation of XC45 steel at high temperature, Mater.Sci .Eng. A, Vol. 534, pp. 101-110, 2012.
|
Chen C., Yin H., Islam I., HumailS., Wang Y., and Qu X., A comparative study of a back propagation artificial neuralnetwork and a Zerilli–Armstrong model for pure molybdenumduring hot deformation, Inter. J. Refractory Metal. Hard Mater., Vol. 25, No. 5-6, pp. 411-416, 2007.
|
Liu J., Chang H.,. Hsu T. Y, and Ruan X., Prediction of the flow stress of high-speed steel during hot deformation using a BP artifcial neural network, J. Mater. Process. Tech., Vol. 103, No. 2, pp. 200-205, 2000.
|
Zhao J., Ding H., Zhao W., Huang M., Wei D., and Jiang Z., Modelling of the hot deformation behaviour of a titanium alloy using constitutive equations and artificial neural network, Comput. Mater. Sci., Vol. 92, pp. 47-56, 2014.
|
Wu R. H., Liu J. T., Chang H. B., Hsu T. Y., and Ruan X. Y., Prediction of the flow stress of 0.4C-1.9Cr-1.5Mn-1.0Ni-0.2Mo steel during hot deformation, J. Mater. Process. Tech.,Vol. 116, No. 2-3, pp. 211-218, 2001.
|
Phaniraj P. M., and Lahiri K. A., The applicability of neural network model to predict flow stress for carbon steels, J. Mater. Process. Tech., Vol. No. 2, 141, pp. 219-227, 2003.
|
Srinivasulu S., and Jain A., A comparative analysis of training methods for artificial neural network rainfall–runoff models, Applied Soft Comput., Vol. 6, No. 3, pp. 295-306, 2006.
|