بررسی رشد ترک در مواد تابعی مدرج از جنس آلومینیم-آلومینا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، گروه مهندسی، دانشگاه تبریز، تبریز، ایران

2 دانشجوی کارشناسی ارشد، دانشگاه لینکوپینگ، سوئد

چکیده

در این مقاله از تست خمش چهار نقطه‌ای جهت بدست آوردن مسیر رشد ترک در مواد تابعی مدرج استفاده شده است. نمونه‏های مورد آزمایش یک ماده‏‏ی تابعی مدرج از جنس آلومینیم و آلومینا می‏باشد. مقادیر فاکتور شدت تنش در مود یک و دو با روش انتگرال J و با کمک گرفتن از شبیه‏سازی عددی به دست آمده و از مقادیر به دست آمده‌ی KI و KII برای تخمین مسیر رشد ترک به وسیله‏‏ی معیارهای ماکزیمم تنش مماسی، گرادیان تنش معادل و min(KII) استفاده شده است. نتایج بدست آمده نشان داد که مقادیر بدست آمده از طریق معیارهای ماکزیمم تنش مماسی و  min(KII) نزدیک مقادیر تجربی می‌باشد ولی نتایج حاصل از گرادیان تنش معادل تفاوت بسیاری با مقادیر تجربی دارد.

کلیدواژه‌ها


[1] V. Cannillo, M. Montorsi, C. Siligardi, A. Sola, G. de-Portu, L. Micele and G. Pezzotti, Microscale computational simulation and experimental measurement of thermal residual stresses in glass–alumina functionally graded materials, J. Eur. Ceram. Soc., Vol. 26, No. 8, pp. 1411-1419, 2006.
[2]  Y. Watanabe, Y. Inaguma, H. Sato and E. Miura-Fujiwara, A novel fabrication method for functionally graded materials under centrifugal force: The centrifugal mixed-powder method, J. Mater., Vol. 2, No. 4, pp. 2510-2525, 2009.
[3] A. Shahrjerdi, F. Mustapha, M. Bayat, S. M. Sapuan and D. L. A. Majid, Fabrication of functionally graded Hydroxyapatite-Titanium by applying optimal sintering procedure and powder metallurgy, Int. J. Phys. Sci., Vol. 6, No. 9, pp. 2258-2267, 2011.
[4]   S. Nan-Chou, J. Lay-Huang, D. Fwu-Lii and H. Hwa-Lu, The mechanical properties of /aluminum alloy A356 composite manufactured by squeeze casting” J. Alloy. Compd., Vol. 419, No. 1-2, pp. 98-102, 2006.
[5] Z. He, J. Ma and G. E. B. Tan, Fabrication and characteristics of alumina–iron functionally graded materials, J. Alloy. Compd., Vol. 486, No. 1-2, pp. 815-818, 2009.
 [6] P. C. Maity, S. C. Panigrahi and P. N. Chakraborty, Preparation of Al– in-situ particle composites by addition of  particles to pure Al melt, Scripta. Metall. Mater., Vol. 28, No. 5, pp. 549-552, 1993.
[7]   P. C. Maity and P. N. Chakraborty, Preparation of aluminium-alumina in-situ particle composite by addition of titania to aluminum melt, J. Mater. Sci. Lett., Vol. 16, pp. 1224-1226, 1997.
[8]  Z. Jing, Y. Huashun, C. Hongmei, M. Guanghui, Al-Si/Al2O3 in situ composite prepared by displacement reaction of CuO/Al system, Journal of Research and Development, Vol. 7, No. 1, pp. 19-23, 2010.
[9]  M. Tilbrook and M. Hoffman, Implementation of the local symmetry criterion for crack-growth simulations, Structural Integrity and Fracture International Conference (SIF'04), pp. 339-344, 2004.
[10] M. R. M. Aliha and M. R. Ayatollahi, Analysis of fracture initiation angle in some cracked ceramics using the generalized maximum tangential stress criterion, Int. J. Solids. Struct., Vol. 49, No. 13, pp. 1877-1883, 2012.
[11] J. M. Koo and Y. S. Choy, A new mixed mode fracture criterion: maximum tangential strain energy density criterion, Eng. Fract. Mech., Vol. 39, No. 3, pp. 443-449, 1991.
[12] H. Zuo and Y. Feng, A universal crack extension criterion based on the equivalent stress gradient: I. theory and numerical verification, Acta. Mech. Solida. Sin., Vol. 25, No. 1, pp. 100-110, 2012.
[13] S. S. Bhadauria, K. K. Pathak and M. S. Hora, Finite element modeling of crack initiation angle under mixed mode (I/II) fracture, J. Solid. Mech., Vol. 2, No. 3, pp. 231-247, 2010.
[14] Y. Heng Chen and T. Jian Lu, on the path dependence of the J-Integral in notch problems, Int. J. Solids. Struct., Vol. 41, No. 3-4, pp. 607-618,  2004.
[15] J. Sheikhi, M. Poorjamshidian, S. Peyman, Mixed-mode stress intensity factors for surface cracks in functionally graded materials uning enriched finite elements, Journal of Solid Mechanics, Vol. 7, No. 1, pp. 1-12, 2015.
 [16] F. Erdogan and G. C. Sih, On the crack extension in plates under plane loading and transverse shear, J. Basic. Engng. ASME. Trans., Vol. 85, No. 4, pp. 519-525, 1963.
[17] D. J. Smith, M. R. Ayatollahi and M. J. Pavier, The role of T-stress in brittle fracture for linear elastic materials under mixed mode loading, Fat. Fract. Engng. Mater. Struct. Vol. 24, No. 2, pp. 137-150, 2001.
 [18] G. P. Cherepanov, The propagation of cracks in a continuous media, J. Appl. Math. Mech., Vol. 31, No. 3, pp. 476-488, 1967.
[19] J. R. Rice, A path independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech. ASME., Vol. 35, pp. 379-386, 1968.
[20] R. Simpson and J. Trevelyan, Evaluation of J1 and J2 integrals for curved cracks using an enriched boundary element method, Eng. Fract. Mech., Vol. 78, No. 4, pp. 623-637, 2011.
[21] N. Arbabi, A. Miri Anbardan, S. Hassanifard, Finite element analysis of failure mechanisms in HDPE/CaCo3 particulate composite, Plastics, Rubber and Composites, Vol. 43, No. 8, pp. 271-277, 2014.
[22] J.H. Kim, G.H. Paulino, On fracture criteria for mixed–mode crack propagation in functionally graded materials, Mechanics of Advanced Materials & Structures, Vol. 14, No. 1, pp. 227-244, 2007.