شبیه‌سازی دینامیک سیالات محاسباتی جریان جوشش فرو سرد در یک لوله عمودی

نوع مقاله : مقاله پژوهشی

نویسنده

مربی، دانشگاه آزاد اسلامی واحد دهدشت

چکیده

در این کار، جریان جوشش فرو سرد در یک لوله عمودی به روش عددی شبیه‌سازی شده است. شبیه‌سازی در کد تجاری دینامیک سیالات محاسباتی با مدل دو سیالی به روش اولر- اولر انجام شده است. برای شبیه‌سازی جریان جوشش فرو سرد، معادلات ترکیبی این جریان، کد نویسی شده و اجرا شدند. پیش بینی درست و مناسب کسرهای حجمی در جریان جوشش فرو سرد یک مرحله مهم در مدل کردن آن است، زیرا کسرهای حجمی به شدت بر انتقال های الگوی جریان تأثیر می‌گذارند. برای هندسه و شرایط مرزی استفاده شده در کار حاضر، توزیع کسر حجمی بدست آمده با داده های آزمایشگاهی موجود، تطابق بسیار خوبی دارند. همچنین نتایج شبیه سازی با دیگر نتایج عددی و نتایج حاصل از کد RELAP5/MOD3.2 نیز مقایسه شده است. علاوه بر کسر حجمی، توزیع دمای مایع، سرعت مایع و شدت آشفتگی نیز بررسی شده­اند.

کلیدواژه‌ها


[1] Shirakawa, N., Yamamoto, Y., Horie, H., and Tsunoyama, S., Analysis of subcooled boiling with the two-fluid particle interaction method", Journal of Nuclear Science and Technology, Vol., 40., pp. 125-135, 2003. [2] Serizawa, A., and Kenning, D.B.R, "A study of forced convective subcooled flow boiling", Tech. Rep., Inst. Atomic energy , Kyoto University, 1979. [3] Zeitoun, O., and Shoukri, M., "Axial void fraction profile in low pressure subcooled flow boiling", International Journal of Heat and Mass Transfer, Vol. 40, pp. 857-867, 1997. [4] Prodanovic, V., "Bubble Behaviour in Subcooled Flow Boiling at Low Pressures and Flow Rates", Ph.D. Thesis, University of British Columbia, Vancouver, Canada, 2001. [5] Guan, P., Jia. L., Yin, L., Wang, S., "Experimental Investigation of Bubble Behaviors in Subcooled Flow Boiling", Journal of Thermal Science, Vol. 21, No. 2, pp. 184-188, 2012. [6] Edelman, Z. and Elias, E., "Void fraction distribution in low flow rate subcooled boiling", Nuclear Engineering and Design, Vol. 66, pp. 375-382, 1981. [7] Okawa, T., Kubota, H., Ishida, T., "Simultaneous measurement of void fraction and fundamental bubble parameters in subcooled flow boiling", Nuclear Engineering and Design, Vol. 237, pp. 1016–1024, 2007. [8] Prodanovic, V., Fraser, D, Salcudean, M., "Bubble behavior in subcooled flow boiling of water at low pressures and low flow rates", International Journal of Multiphase Flow, Vol. 28, pp. 1-19, 2002. [9] Koncar, B., Kljenak, I., Mavko, B., "Modelling of local two-phase flow parameters in upward subcooled flow boiling at low pressure", International Journal of Heat and Mass Transfer, Vol. 47, pp. 1499–1513, 2004. [10] Končar, B., Krepper, E., Egorov, Y., "CFD modeling of subcooled flow boiling for nuclear engineering applications", International Conference Nuclear Energy for New Europe Bled, Slovenia, September 5-8, 2005. [11] Končar, B., Krepper, E., "CFD simulation of refrigerant boiling in vertical annulus", Workshop on Modelling and Measurements of Two-Phase Flow and Heat Transfer in Nuclear Fuel Assemblies Stockholm, Sweden, 10-11 October, 2006. [12] Delhaye, J.M., Maugin, F., Ochterbeck, J.M., "Void fraction predictions in forced convective subcooled boiling of water between 10 and 18 MPa", International Journal of Heat and Mass Transfer, Vol. 47, pp. 4415–4425, 2004. [13] Soodphakdee, D., Tu, J., Behnia, M., "CFD Code Benchmark on Void Fraction Distribution in Subcooled Flow Boiling of a Concentric Annular Tube at Low Pressure", 14th Australasian Fluid Mechanics Conference Adelaide University, Adelaide, Australia 10-14 December, 2001. [14] Ranz, W. E., Marshall, W. R., "Evaporation from droplets: parts I and II", Chemical Engineering Progress, Vol. 48, pp. 141-148, 1952. [15] Ishii, M., Zuber, N., "Drag coefficient and relative velocity in bubbly, droplet or particulate flows", American institute of chemical engineering journal, Vol. 25, pp. 843-855, 1979. [16] Drew, D. A., Lahey, R. T. Jr., "Application of general constitutive principles to the derivation of multi-dimensional two-phase flow equation", International Journal of Multiphase Flow, Vol. 5, pp. 243-264, 1979. [17] Wang, S. K., Lee, S. J., Lahey, R. T. Jr., Jones, O. C., "3-D turbulence structure and phase distribution measurements in bubbly twophase flows", International Journal of Multiphase Flow, Vol. 13, pp. 327-343, 1987. [18] Lopez de Bertodano, M. "Tubulent bubbly two-phase flow in a triangular duct", Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, New York, 1992. [19] Antal, S. P., Lahey, R. T. Jr., Flaherty, J. E., "Analysis of phase distribution and turbulence in dispersed particle/liquid flows", Chemical Engineering Communication, Vol. 174, pp. 85-113, 1991. [20] Kurul, N., Podowski, M. Z., "Multi-dimensional effects in forced convection sub-cooled boiling", Proceedings of the 9th Heat Transfer Conference, Jerusalem, Israel, Hemisphere Publishing Corporation, 2, 21-26, 1990. [21] Sato, Y., Sadatomi, M., Sekoguchi, K., "Momentum and heat transfer in two-phase bubbly flow-I", International Journal of Multiphase Flow, Vol. 7, pp. 167-178, 1981. [22] Tu, J. Y., Yeoh, G. H., "On numerical modelling of low-pressure subcooled boiling flows", International Journal of Heat Mass Transfer, Vol. 45, pp. 1197-1209, 2002. [23] Bartolemei, C.C., Chanturiya, V.M., "Experimental study of true void fraction when boiling subcooled water in vertical tubes", Thermal Engineering, Vol. 14, pp. 123-128, 1967. [24] Thome, J.R., "Boiling in microchannels: a review of experiment and theory", International Journal of Heat and Fluid Flow, Vol. 25, pp. 128-139, 2004. [25] Koncar, B., Mavko, B., Modelling of low-pressure subcooled flow boiling using the RELAP5 code", Nuclear Engineering and Design, Vol. 220, pp. 255-273, 2003. [26] Thome, J.R., "Update on advances in flow pattern based two-phase heat transfer models", Experimental Thermal and Fluid Science, Vol. 29, pp. 341-349, 2005. [27] Larsen, P.S., Tong, L.S., "Void fraction in subcooled flow boiling", Journal of Heat Transfer, Vol. 91, pp.471-476, 1969. [28] Deghal, A.L., Chaker, A., "Numerical Study of Subcooled Boiling In Vertical Tubes Using Relap5/Mod3.2", Journal of Electron Devices, Vol. 7, pp. 240-245, 2010. [29] Kays, W.M., Crawford, M.E., and Weigand, B., "Convective Heat and Mass Transfer", 4th Ed., McGraw-Hill, Boston, 2005. [30] Frost, W., Dzakowic, G.S., "An extension of the method of predictive incipient boiling on commercially finished surfaces", International ASME-AIChE Heat Transfer Conference, Seattle, 1967. [31] Saha, P., Zuber, N., "Point of net vapor generation and vapor void fraction in subcooled boiling", Fifth International Heat Transfer Conference, Tokyo, paper B4.7, 1974. [32] FLUENT Incorporated. FLUENT 6.3 user's guide. Lebanon, New Hampshire. USA, 2007.