مطالعه عددی و تجربی برخورد یک جت مستطیلی با یک صفحه تخت در راستای عمود بر محور

نوع مقاله : مقاله کوتاه

نویسندگان

1 استادیار مهندسی مکانیک، دانشگاه آزاد اسلامی واحد شیراز، گروه مهندسی مکانیک، شیراز

2 دانشجوی دکتری مهندسی مکانیک، دانشگاه هرمرگان، گروه مهندسی مکانیک، بندرعباس

چکیده

در این تحقیق تحلیل تجربی و عددی بر روی مشخصات جریان آشفته ناشی از تماس جت با صفحه صاف انجام شده است. هدف از این تحقیق بررسی رفتار جت برشی است. در مدل عددی از روش حجم محدود و مدل آشفتگی k-ε realizable استفاده می شود. توزیع فشار و تنش برشی بر روی صفحه صاف برای فواصل مختلف میان صفحه و نازل مشخص شده است. مقایسه میان نتایج عددی و اندازه گیری های تجربی نشان می دهد که نتایج عددی از صحت کامل برخوردار بوده و در صورتی که فاصله افقی میان دهانه نازل و صفحه مسطح  84/7 برابر طول مشخصه جت باشد، تنش برشی برروی صفحه مسطح حداکثر مقدار خود را خواهد داشت. بنابراین در این حالت جت بیشترین کارایی خود در عمل برش را خواهد داشت.

کلیدواژه‌ها


Acar, H. & Atli, V., "An Experimental Investigation of a Rectangular Jet Impinging on a Flat Surface Obliquely", ICAS Congress, UK, 2000. Alavi, S.P. & Tahavvor, A.R., .," Numerical and experimental study of jet impingement onto a circular cylinder with/without offset", Proc. of 10th Annual Int. Conf. Mech. Eng., ISME, K.N. Toosi University of Technology, 2002. Chattopadhyay, H.K. & Saha, S., "Turbulent Flow and Heat Transfer from a Slot Jet Impinging on a Moving Plate", Int J Heat Fluid Fl, vol. 24, pp. 685-697, 2003. Senter J., Solliec C., "Flow Field Analysis of a Turbulent slot Air Jet Impinging on a Moving Flat Surface", Int J Heat Fluid Fl, vol.28, pp.708-719, 2007. Dewan A., Dutta R., Srinivasan B., "Recent trends in computation of turbulent jet impingement heat transfer", Heat Transfer Eng, vol.33, pp.447-460, 2012. Behnia M, Parneix S, Shabany Y, Durbin PA. "Numerical study of turbulent heat transfer in confined and unconfined impinging jets", Int J Heat Fluid Fl, vol. 20, pp. 1–9, 1999. Plat S, Huang B, Mujumdar AS, Douglas WJ. "Numerical flow and heat transfer under impinging jets", Annual Review of Num Fluid Mechs Heat Trans., vol. 2, pp. 157–197, 1989. Wang SJ, Mujumdar AS. "A comparative study of five low Reynolds number k–ε models for impingement heat transfer", Applied Thermal Engineering, vol. 25, pp. 31–44, 2005. Meslem A., Sobolik V., Bode F., Sodjavi K., Zaouali Y., Nastase I., Croitoru C., "Flow dynamics and mass transfer in impinging circular jet at low Reynolds number. Comparison of convergent and orifice nozzles", International Journal of Heat and Mass Transfer, vol. 67, pp. 25-45, 2013. Xu B., Wen J., Volkov K. "Large-eddy simulation of vortical structures in a forced plane impinging jet", Europ J Mech - B/Fluids, vol. 42, pp. 104-120, 2013. Imbriale M., Ianiro A., Meola C., Cardone G., "Convective heat transfer by a row of jets impinging on a concave surface", Int J Thermal Sci., vol. 75,pp. 153-163, 2014. Dou R., Wen Z., Zhou G., Liu X., Feng X., "Experimental study on heat-transfer characteristics of circular water jet impinging on high-temperature stainless steel plate", Applied Thermal Engineering, Vol. 62(2), pp. 738-746, 2014. Arthurs D., Ziada S., "Effect of nozzle thickness on the self-excited impinging planar jet", J Fluids Struc, In Press, Corrected Proof, 2013. Alnahhal, M.H., "Turbulent Rectangular Jets", PhD thesis, Dept. of Mechanical Engineering and Aeronautics University of Patras, Greece, 2010. Vickers, J., "Heat transfer coefficient between fluid jets and normal surfaces", Industrial Eng. Chem., vol. 51, pp. 967-972, 2008. McNaughton, K.J., Sinclair, C.G., "Submerged jets in short cylindrical flow vessels", J. Fluid Mechanics, vol. 25, pp. 367-375, 1996. Cederwell, K., "The initial mixing on jet disposal into a recipient", Publ. nos. 14 and 15, Division of Hydraulics, Chalmers University of Technology, Goteborg, Sweden, 1963. Gordon R., Cobonpue J., "Heat transfer between a flat plate and jets impinging on it", Int Develop Heat Transf, vol. 3, pp. 454-460, 1962. Barata, J.M.M., Durào, D.F.G., Heitor, M.V., McGuirk, J.J., "The turbulence characteristics of a single impinging jet through a cross-flow", Exp. Therm. Fluid Sci., vol. 5, pp. 487-498, 1992. Craft, T., Graham, L., Launder, B., "Impinging jet studies for turbulence model assessment – II. An examination of the performance of four turbulence models", Int. J. Heat Mass Transf., vol. 36, pp. 2685-2697, 1993. Nishino, K. & Samada, M. & Kasuya, K. & Torii, K., "Turbulence statistics in the stagnation region of an axisymmetric impinging jet flow", Int. J. Heat Fluid Flow, vol. 17, pp. 193-201, 1996. Fernández, J.A., Elicer-Cortés, J.C., Valencia, A., Pavageau, M., Gupta, S., "Comparison of low-cost two-equation turbulence models for prediction flow dynamics in twin-jets devices", Int. Commun. Heat and Mass Transf., vol. 34, pp. 570-578, 2007. Balabel, A. & El-Askary, W.A., "On the performance of linear and nonlinear k-ε turbulence models in various jet flow applications", Europ J Mech.- B/Fluids, vol. 30, pp. 325-340, 2011. Shih T.H., Liou, W.W., Shabbir, A., Zhu, J., "A New k-ε Eddy-Viscosity Model for High Reynolds Number Turbulent Flows - Model Development and Validation", Computers Fluids, vol. 3, pp. 227-238, 1995. Kang S.H., Greif R., "Flow and heat transfer to a circular cylinder with a hot impinging air jet", Int J Heat Mass Transf, vol. 35, pp. 2173-2183, 1992. Patankar, S.V., "Numerical heat transfer and fluid flow", Taylor & Francis, 1980.