تحلیل ارتعاشات آزاد صفحه‌های ساندویچی ساخته شده از مواد خواص گرادیانی تقویت شده با گرافن و هسته الکترورئولوژیکال

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجو کارشناسی ارشد، گروه مهندسی هوافضا، دانشگاه سمنان، سمنان، ایران

2 دانشیار، گروه مهندسی هوافضا، دانشگاه سمنان، سمنان، ایران

چکیده

در این مقاله به بررسی ارتعاشات آزاد و ضریب میرایی صفحه‌های ساندویچی با رویه های ساخته شده از مواد خواص گرادیانی تقویت شده با گرافن و هسته الکترورئولوژیکال پرداخته شده است. جهت بررسی اثرات تقویت کننده، توزیع‌های گوناگون گرافن شاملFG-Λ ،FG-X ،  FG-O و UD مورد بررسی قرار گرفته و تاثیرات حاصل از به کارگیری این توزیع­ها درصفحه ساندویچی مورد مطالعه قرار گرفته است. معادلات حرکت با استفاده از معادلات همیلتون استخراج شده و فرض نظریه کلاسیک برای رویه و نظریه مرتبه اول برشی برای هسته الکترورئولوژیکال استخراج شده است. شرایط مرزی با تکیه گاه ساده برای همه لبه‌ها در نظر گرفته شده و از سری فوریه برای حل معادلات بهره گرفته شده است. نتایج به دست آمده با نتایج پژوهشهای پیشین مقایسه و اعتبارسنجی شده و سپس تاثیرات پارامترهایی همچون نسبت های مختلف ابعاد، ضخامت هسته الکترورئولوژیکال، نوع توزیع گرافن، کسر حجمی و میدان الکتریکی مورد ارزیابی قرار گرفته است. نتایج به دست آمده بیانگر این موضوع است که افزودن گرافن حتی به میزان بسیار کم باعث افزایش چشمگیر سختی سازه خواهد شد. همچنین با تغییر میدان الکتریکی می توان مقدار سختی و میرایی سازه را کنترل نمود.

کلیدواژه‌ها

موضوعات


[1] Stanway R, Sproston JL, El-Wahed AK. Applications of electro-rheological fluids in vibration control: A survey. Smart Materials and Structures. 1996;5(4):464-482.
[2] Liu Y, Davidson R, Taylor P. Investigation of the touch sensitivity of ER fluid based tactile display. Smart Structures and Integrated Systems. 2005;5764:92..
[3] Gholamzadeh Babaki MH, Shakouri M. Free and forced vibration of sandwich plates with electrorheological core and functionally graded face layers. Mechanics Based Design of Structures and Machines. 2021;49(5):689-706.
[4] Rokn-Abadi M, Yousefi M, Haddadpour H, Sadeghmanesh M. Dynamic stability analysis of a sandwich beam with magnetorheological elastomer core subjected to a follower force. Acta Mechanica. 2020;231(9):3715-3727.
[5] Choi WJ, Xiong YP, Shenoi RA. Vibration characteristics of sandwich beams with steel skins and magnetorheological elastomer cores. Advances in Structural Engineering. 2010;13(5):837-847.
[6] Afshar Movahed R. Investigation of mechanical connections in plates and shells made of composite and metal materials. MSc. Seminar, Semnan University, 1397.
[7] Choi SB, Park YK, Cheong CC. Active vibration control of intelligent composite laminate structures incorporating an electro-rheological fluid. Journal of Intelligent Material Systems and Structures. 1996;7(4):411-419.
[8] Deng HX, Gong XL. Adaptive tuned vibration absorber based on magnetorheological elastomer. Journal of Intelligent Material Systems and Structures. 2007;18(12):1205-1210.
[9] Dwivedy SK, Srinivas M. Dynamic instability of MRE embedded soft cored sandwich beam with non-conductive skins. Shock and Vibration. 2011;18(6):759-788.
[10] Eshaghi M, Sedaghati R, Rakheja S. Dynamic characteristics and control of magnetorheological/electrorheological sandwich structures: A state-of-the-art review. Journal of Intelligent Material Systems and Structures. 2016;27(15):2003-2037.
[11] Han YM, Oh JS, Kim S, Choi SB. Design of multi-degree motion haptic mechanisms using smart fluid-based devices. Mechanics Based Design of Structures and Machines. 2017;45(1):135-144.
[12] Hasheminejad SM, Motaaleghi MA. Supersonic flutter control of an electrorheological fluid-based smart circular cylindrical shell. International Journal of Structural Stability and Dynamics. 2014;14(2):1-24.
[13] Hasheminejad SM, Maleki M. Free vibration and forced harmonic response of an electrorheological fluid-filled sandwich plate. Smart Materials and Structures. 2009;18(5):055011.
[14] Kolekar S, et al. Vibration controllability of sandwich structures with smart materials of electrorheological fluids and magnetorheological materials: a review. Journal of Vibration Engineering & Technologies. 2019;1-19.
[15] Kumar S, Ranjan V, Jana P. Free vibration analysis of thin functionally graded rectangular plates using the dynamic stiffness method. Composite Structures. 2018;197:39-53.
[16] Lall AK, Asnani NT, Nakra BC. Vibration and damping analysis of rectangular plate with partially covered constrained viscoelastic layer. Journal of Vibration and Acoustics, Transactions of the ASME. 1987;109(3):241-247.
[17] Song M, Kitipornchai S, Yang J. Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Composite Structures. 2017;159:579-588.
[18] بیشه ح، علی بیگلو ا. تحلیل ارتعاشات ازاد ورق کامپوزیتی حلقوی تقویت شده با گرافن با استفاده از نظریه سه بعدی الاستیسیته. مجله مهندسی مکانیک دانشگاه تبریز. 1400، د. 51، ش. 1، ص 59-67.
[19] ندیریان ن، بیگلری ح، حامد م. بررسی پاسخ دینامیکی حلقه باز و بسته تیر ساندویچی با هسته انعطاف پذیر مجهز به حسگر و عملگر پیزوالکتریک. مجله مهندسی مکانیک دانشگاه تبریز. 1397، د. 48، ش. 1، ص 331-339.
[20] کروبی ر، ایرانی رهقی م. تحلیل ارتعاشات آزاد پوسته جدار نازک چند لایه با هسته مدرج تابعی و لایه های حسگر و عملگر پیزوالکتریک. مجله مهندسی مکانیک دانشگاه تبریز. 1397، د. 48، ش. 1، ص. 307-314.