در مطالعهی حاضر، عملکرد آیرودینامیکی توربین بادی ترکیبی به صورت عددی مورد بررسی قرار گرفته است. برای حل و گسستهسازی معادلات حاکم بر جریان، روش حجم محدود بهکار گرفته شده است. هدف از این تحقیق، ارزیابی تاثیر نسبت سرعت نوک (TSR) و سرعت آزاد باد (U¥) بر عملکرد آیرودینامیکی توربین بادی ترکیبی داریوس-ساونیوس است. به این منظور، با کمک دینامیک سیالات محاسباتی(CFD) ، نتایج بهدست آمده با دادههای عددی و تجربی موجود در مطالعات گذشته اعتبارسنجی شدهاند. همچنین، رفتار توربین بادی مورد نظر در مقادیر 5/3 و 5/2 ،5/1= TSR و m/s 10 و 5 = U¥ مورد بررسی قرار گرفته است. نتایج بهدست آمده از این تحقیق نشان میدهد که در TSRهای پایین، نفوذ هوا به داخل روتور بیشتر شده و این اتفاق باعث افزایش نیروی پسا توسط روتور داخلی میگردد. علاوهبر آن، با افزایش U¥، ضریب گشتاور و ضریب توان هر دو افزایش یافتهاند. نهایتا، روتور ترکیبی در 5/1 = TSR و m/s 10 = U¥ بیشترین توان را نسبت به حالتهای دیگر تولید کرده، به طوری که بیشترین ضریب توان برابر 367/0 است.
Yadegari M, Bak Khoshnevis A. Investigation of entropy generation, efficiency, static and ideal pressure recovery coefficient in curved annular diffusers. The European Physical Journal Plus. 2021;136:1-9.
Yadegari M, Bak Khoshnevis A. Numerical study of the effects of adverse pressure gradient parameter, turning angle and curvature ratio on turbulent flow in 3D turning curved rectangular diffusers using entropy generation analysis. The European Physical Journal Plus. 2020;135(7):1-21.
Yadegari M, Khoshnevis AB. Entropy generation analysis of turbulent boundary layer flow in different curved diffusers in air-conditioning systems. The European Physical Journal Plus. 2020;135(6):534.
Yadegari M. An optimal design for S-shaped air intake diffusers using simultaneous entropy generation analysis and multi-objective genetic algorithm. The European Physical Journal Plus. 2021;136(10):1019.
Yadegari M, Bak Khoshnevis A. A numerical study over the effect of curvature and adverse pressure gradient on development of flow inside gas transmission pipelines. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2020;42:1-5.
Haghighatjoo H, Yadegari M, Bak Khoshnevis A. Optimization of single-obstacle location and distance between square obstacles in a curved channel. The European Physical Journal Plus. 2022;137(9):1042.
Sobhani E, Ghaffari M, Maghrebi MJ. Numerical investigation of dimple effects on darrieus vertical axis wind turbine. Energy. 2017;133:231-41.
Arpino F, Scungio M, Cortellessa G. Numerical performance assessment of an innovative Darrieus-style vertical axis wind turbine with auxiliary straight blades. Energy Conversion and Management. 2018;171:769-77.
Qasemi K, Azadani LN. Optimization of the power output of a vertical axis wind turbine augmented with a flat plate deflector. Energy. 2020;202:117745.
Jiang Y, Zhao P, Stoesser T, Wang K, Zou L. Experimental and numerical investigation of twin vertical axis wind turbines with a deflector. Energy Conversion and Management. 2020;209:112588.
Mohamed MH. Performance investigation of H-rotor Darrieus turbine with new airfoil shapes. Energy. 2012;47:522-30.
Song C, Wu G, Zhu W, Zhang X. Study on aerodynamic characteristics of darrieus vertical axis wind turbines with different airfoil maximum thicknesses through computational fluid dynamics. Arabian Journal for Science and Engineering. 2020;45:689-98.
Mohamed MH, Dessoky A, Alqurashi F. Blade shape effect on the behavior of the H-rotor Darrieus wind turbine: Performance investigation and force analysis. Energy. 2019;179:1217-34.
Chan CM, Bai HL, He DQ. Blade shape optimization of the Savonius wind turbine using a genetic algorithm. Applied energy. 2018;213:148-57.
Lee J-H, Lee Y-T, Lim H-C. Effect of twist angle on the performance of Savonius wind turbine. Renewable Energy. 2016;89:231-44.
Roy S, Saha UK. Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine. Applied Energy. 2015;137:117-256.
Alom N, Saha UK. Influence of blade profiles on Savonius rotor performance: Numerical simulation and experimental validation. Energy Conversion and Management. 2019;186:267-77.
Hassanzadeh R, Mohammadnejad M. Effects of inward and outward overlap ratios on the two-blade Savonius type of vertical axis wind turbine performance. International Journal of Green Energy. 2019;16:1485-96.
Hassanzadeh R, Mohammad NM. Effect of Overlapping Size on the Performance of the Savonius Wind Turbine, in Both Conventional and the Bach-Type Models. 2019.
Liang X, Fu S, Ou B, Wu C, Chao CYH, Pi K. A computational study of the effects of the radius ratio and attachment angle on the performance of a Darrieus-Savonius combined wind turbine. Renewable energy. 2017;113:329-34.
Gupta R, Biswas A, Sharma KK. Comparative study of a three-bucket Savonius rotor with a combined three-bucket Savonius–three-bladed Darrieus rotor. Renewable Energy. 2008;33:1974-81.
Hosseini A, Goudarzi N. Design and CFD study of a hybrid vertical-axis wind turbine by employing a combined Bach-type and H-Darrieus rotor systems. Energy conversion and management. 2019;189:49-59.
Jacob J, Chatterjee D. Design methodology of hybrid turbine towards better extraction of wind energy. Renewable Energy. 2019;131:625-43.
Saini G, Saini RP. Comparative investigations for performance and self-starting characteristics of hybrid and single Darrieus hydrokinetic turbine. Energy Reports. 2020;6:96-100.
Liu K, Yu M, Zhu W. Enhancing wind energy harvesting performance of vertical axis wind turbines with a new hybrid design: A fluid-structure interaction study. Renewable Energy. 2019;140:912-27.
Saini G, Saini RP. A numerical analysis to study the effect of radius ratio and attachment angle on hybrid hydrokinetic turbine performance. Energy for Sustainable Development. 2018;47:94-106.
Asadi M, Hassanzadeh R. Effects of internal rotor parameters on the performance of a two bladed Darrieus-two bladed Savonius hybrid wind turbine. Energy Conversion and Management. 2021;238:114109.
Rezaeiha A, Kalkman I, Blocken B. CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: Guidelines for minimum domain size and azimuthal increment. Renewable energy. 2017;107:373-85.
Sepehrianazar F, Hassanzadeh R, Mirzaee I. Turbulence and Energy Assessment of a Two Bladed H-Type Vertical Axis Wind Turbine Between Two High-Rise Buildings. International Journal of Heat and Technology. 2019; 948-57.
Tescione G, Ragni D, He C, Ferreira CJS, Van Bussel GJW. Near wake flow analysis of a vertical axis wind turbine by stereoscopic particle image velocimetry. Renewable Energy. 2014;70:47-61.
اسدی, محمد, & حسن زاده, رحیم. (1403). ارزیابی تاثیر نسبت سرعت نوک و سرعت آزاد باد بر عملکرد آیرودینامیکی توربین بادی ترکیبی. مهندسی مکانیک دانشگاه تبریز, 54(1), 61-70. doi: 10.22034/jmeut.2024.59969.3361
MLA
محمد اسدی; رحیم حسن زاده. "ارزیابی تاثیر نسبت سرعت نوک و سرعت آزاد باد بر عملکرد آیرودینامیکی توربین بادی ترکیبی". مهندسی مکانیک دانشگاه تبریز, 54, 1, 1403, 61-70. doi: 10.22034/jmeut.2024.59969.3361
HARVARD
اسدی, محمد, حسن زاده, رحیم. (1403). 'ارزیابی تاثیر نسبت سرعت نوک و سرعت آزاد باد بر عملکرد آیرودینامیکی توربین بادی ترکیبی', مهندسی مکانیک دانشگاه تبریز, 54(1), pp. 61-70. doi: 10.22034/jmeut.2024.59969.3361
VANCOUVER
اسدی, محمد, حسن زاده, رحیم. ارزیابی تاثیر نسبت سرعت نوک و سرعت آزاد باد بر عملکرد آیرودینامیکی توربین بادی ترکیبی. مهندسی مکانیک دانشگاه تبریز, 1403; 54(1): 61-70. doi: 10.22034/jmeut.2024.59969.3361