مقایسه تجربی تأثیر نانوذرات زیستی و نانو ذرات فلزی اکسید تیتانیوم بر خواص تریبولوژیکی روان‌کارهای زیستی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی مکانیک، واحددزفول، دانشگاه آزاد اسلامی، دزفول، ایران

2 استادیار، دانشکده مهندسی مکانیک، دانشگاه صنعتی جندی شاپور دزفول، دزفول، ایران

10.22034/jmeut.2024.59337.3344

چکیده

در این پژوهش عملکرد نانوذرات بیوچار و تیتانیوم دی‌اکسید در ترکیب با روغن سویای اپوکسی شده به‌عنوان روان‌کار پایه زیستی بررسی می­شود. با استفاده از دستگاه آسیای مکانیکی سیاره‌ای، نانوذرات بیوچار از زغال باگاس نیشکر تولید شد. سپس جهت بررسی کیفیت و اندازه‌ی نانوذرات، نمونه‌هایی تهیه و با میکروسکوپ الکترونی روبشی تصویربرداری انجام شد. نانوذرات تیتانیوم دی‌اکسید نیز به‌صورت تجاری تهیه گردید. در مرحله‌ بعد نانوذرات با درصدهای وزنی 1/۰، 2/۰ و ۵/۰ با سیال زیستی ترکیب و پس از اطمینان در خصوص دستیابی به یک نانوسیال پایدار، آزمون تعیین خواص سایشی و اصطکاکی انجام شد. نتایج نشان می­دهد، تغییرات ضریب اصطکاک برای مخلوط‌های شامل تیتانیوم دی‌اکسید، نسبت به نانو بیوچار بهتر است. در غلظت 1/0، مقدار میانگین ضریب اصطکاک نانوذرات تیتانیوم دی‌اکسید، 092/0 و نانو بیوچار، 115/0 ثبت شد. برای غلظت 2/0، به ترتیب 067/0 و 143/0 و برای غلظت 5/0، به ترتیب 064/0 و 111/0 می­باشد. میزان سایش دیسک‌های مربوط به نانو روان‌کار با غلظت‌های 1/0، 2/0 و 5/0 حاوی تیتانیوم دی‌اکسید نسبت به نانو بیوچار به ترتیب 65/24،  43/35 و %48/85 کمتر است.

کلیدواژه‌ها

موضوعات


[1] Chaurasia Sk,  Singh Nk, Singh Lk. Friction and wear behavior of chemically modified Sal (Shorea Robusta) oil for bio based lubricant application with effect of CuO nanoparticles. Fuel. 2020 December; 282.
 [2] Singh Ya., Chaudhary V, Pal V. Friction and wear characteristics of the castor oil with TiO2 as an additives. Materials Today: Proceedings. 2020 June; 26: 2972-2976.
[3] Singh Y, Singh NK, Sharma A, Singla A, Singh D,  Abd Rahim E.  Effect of ZnO nanoparticles concentration as additives to the epoxidized Euphorbia Lathyris oil and their tribological characterization. 2021 February; Fuel. 285.
[4[Ghorbani M, Ebrahimnezhad-Khaljiri H, Eslami-Farsani R,  Vafaeenezhad H. The synergic effect of microcapsules and titanium nanoparticles on the self-healing and self-lubricating epoxy coatings: A dual smart application. Surfaces and Interfaces. 2021 April;  23.
]5[ وفائی­زاده م، تقی­پور ع،  بررسی تجربی تأثیر نانو ذرات بر خواص تریبولوژیکی زیست روانکارها.  مجله مهندسی مکانیک، 1400، د. 51، ش. 1، ص.267-275.
[6] Iranain Nanomaterils Pioneers Company, Third unit. No51.Sadaf No.5.Vakil Abad Blv. Mashhad City, Khorasan Province, Iran. Website: iraNanotech.com
]7 [تقی پور  ع.  بررسی تجربی عملکرد ضد سایشی نانو روان کارها در گیربکس ماشین آلات دوار. مهندسی ساخت و تولید ایران، 1398، د. 6، ش. 2، ص. 38-30.‎
[9] Zhao J, Huang Y, He Y,  Shi Y.  Nanolubricant additives: A review. Friction. 2021 December; 9:  891-917.
]10[حیدری مقدم ع،  یوزباشی زاده ح،  دشتی زاد وا، کفلو ع. سنتز ترکیب بین فلزی نانوساختار Zr3Co با خاصیت جذب بالا به روش آلیاژسازی مکانیکی. فرآیندهای نوین در مهندسی مواد, 1394، د. 9، ش. 3, ص. 25-40.
[11] Gao  M, Li  H, Ma L, Gao Y, Ma L, Luo J.  Molecular behaviors in thin film lubrication—Part two: Direct observation of the molecular orientation near the solid surface. Friction. 2019 June; 7: 479-488.
[12] Ratoi  M, Niste VB, Walker J, Zekonyte J. Mechanism of action of WS2 lubricant nanoadditives in high-pressure contacts. Tribology letters. 2013 August; 52: 81-91.
[13] Kaviyarasu T, Vasanthan B. Improvement of tribological and thermal properties of engine lubricant by using nano-materials. J Chem Pharm Sci (JCHPS). 2015 January; 7: 208-211.
[14] Li R, Wang Y, Zhang J, Zhang J. Origin of higher graphitization under higher humidity on the frictional surface of self-mated hydrogenated carbon films. Applied Surface Science. 2019: 494: 452-457.
[15] Wang Y,  Gao K,  Zhang B, Wang Q, Zhang J. Structure effects of sp2-rich carbon films under super-low friction contact. Carbon. 2018 October; 137: 49-56.
[16] Thapliyal P, Kumar A, Thakre GD. Rheological and tribological behaviour of nanofluids: an experimental evaluation. National Conference on Physics and Chemistry of Materials (NCPCM). 2023.
[17] Rasheed AK, Khalid M, Javeed A, Rashmi W, Gupta TCSM,  Chan A.  Heat transfer, tribology and performance of graphene nanolubricants in an IC engine. Tribology International. 2016 November; 103: 504-515.
[18] Ali MKA, Xianjun H,  ai L, Qingping C, Turkson RF,  Bicheng C. Improving the tribological characteristics of piston ring assembly in automotive engines using Al2O3 and TiO2 nanomaterials as nano-lubricant additives. Tribology International. 2016 November; 103: 540-554.
[19] Ingole S, Liang H, Usta M, Bindal C, Ucisik AH.  Multi-scale wear of a boride coating on tungsten. Wear.2005 July–August. 259: 849-860.
[20] Xia W, Zhao J, Cheng X, Sun J, Wu H, Yan Y,  Jiang  Z. Study on growth behaviour of oxide scale and its effects on tribological property of nano-TiO2 additive oil-in-water lubricant. Wear.2017 April;  376 : 792-802.
]21[ تاجدینی پ، ولی زاده  ک، خباززاده  م، طهماسبی م م. اثر اندازه, شکل ذره و اندازه حفره بر روی سطح ویژه نانو ذرات کاتالیستی و بازار جهانی نانو کاتالیست. کنفرانس بین المللی نفت، گاز، پتروشیمی و نیروگاهی. 1391، Available from: https://sid.ir/paper/815066/fa
[22] Lee K, Hwang Y, Cheong S, Choi Y, Kwon L, Lee J, Kim SH. Understanding the role of nanoparticles in nano-oil lubrication. Tribology letters. 2009 April; 35:127-131.