بررسی تجربی عوامل مؤثر بر سنتزِ احتراقیِ نانولوله‌های ‌کربنی در شعلۀ لایه‌ای، پخشی و جریان‌موازیِ متان/ هوا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد، دانشکدۀ مهندسی مکانیک، دانشگاه تهران، تهران، ایران

2 استادیار، دانشکدۀ مهندسی مکانیک، دانشگاه تهران، تهران، ایران،

چکیده

سنتزِ احتراقیِ نانولوله‌های کربنی، به‌دلیل ایجاد خودکارِ گرما و مولکول‌های سازندۀ نانولوله‌ها و صرفۀ اقتصادی، برای کاربرد در مقیاس صنعتی مناسب است. در این پژوهش، عوامل مؤثر بر سنتزِ احتراقیِ نانو‍‌لوله‌های‌کربنی در شعله‌های پخشیِ لایه‌ای و جریان‌موازیِ متان/هوا به‌صورت تجربی بررسی شده‌‌است. این عوامل عبارت‌اند از: محل و مدت‌زمان قرار‌گیریِ کاتالیست در شعله، جنس کاتالیست، ولتاژ الکتریکیِ اعمال‌شده به کاتالیست، و مدت‌زمان اسیدشویی. نانولوله‌ها فقط در فاصله‌ای برابر دودَهمِ ارتفاع شعله از خروجیِ مشعل و دور از محل تشکیلِ ترکیباتِ سنگینِ کربنی رشد می‌کنند. مناسب‌ترین مدت‌زمانِ اسید‌شویی حدود 3 دقیقه است. بیشترین رشد با کاتالیست نیکروم 80-20 حاصل می‌شود. اعمال ولتاژ تراکم و طول نانو‌لوله‌ها را کاهش می‌دهد. کاهش تراکم رشد با افزایش مدت‌زمان قرار‌دهیِ کاتالیست در شعله جبران می‌شود. اعمال ولتاژ قطر نانولوله‌ها را کمتر، توزیع قطر‌ را یکنواخت‌تر، و نانولوله‌ها را کشیده‌تر می‌کند. بدون ولتاژ، میانگین قطر نانولوله‌ها 186 نانومتر و انحراف معیار آن 31 نانومتر است. ولتاژِ 5- ولت قطر نانولوله‌ها را 20% کمتر و انحراف معیار قطر نانولوله‌ها را 50% کمتر می‌کند. با افزایش ولتاژ به 10- ولت، قطر نانولوله‌ها 30% دیگر نیز کاهش می‌یابد.

کلیدواژه‌ها

موضوعات


  • Dresselhaus MS, Dresselhaus G, Charlier JC, Hernandez E. Electronic, Thermal and Mechanical Properties of Carbon Nanotubes. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2004 Oct;362:2065–2098.
  • Gupta N, Gupta SM, Sharma SK. Carbon Nanotubes: Synthesis, Properties and Engineering Applications. Carbon Letters. 2019 Oct;29:419–447.
  • Hamzah N, Mohd Yasin MF, Mohd Yusop MZ, Saat A, Mohd Subha NA. Rapid Production of Carbon Nanotubes: A Review on Advancement in Growth Control and Morphology Manipulations of Flame Synthesis. Journal of Materials Chemistry A. 2017 Nov;5:25144–25170.
  • Xu F. Investigating Flame-Based Synthesis of Carbon Nanotubes and Metal-Oxide Nanowires, Ph.D. Dissertation, Rutgers the State University of New Jersey, 2007.
  • Serrano-Bayona R, Chu C, Liu P, Roberts WL. Flame Synthesis of Carbon and Metal-Oxide Nanoparticles: Flame Types, Effects of Combustion Parameters on Properties and Measurement Methods. Materials. 2023 Jan;16:1192.
  • Mittal G, Dhand V, Rhee KY, Kim HJ, Jung DH. Carbon Nanotubes Synthesis Using Diffusion and Premixed Flame Methods: A Review. Carbon Letters. 2015 Jan;16:1–10.
  • Gore JP, Sane A. Flame Synthesis of Carbon Nanotubes, In Yellampalli S (Editor). Carbon Nanotubes-Synthesis, Characterization, Applications, Chapter 7, InTechOpen, 2011.
  • Ibrahim MH, Hamzah N, Mohd Yusop MZ, Septiani NL, Mohd Yasin MF. Control of Morphology and Crystallinity of CNTs in Flame Synthesis with One-Dimensional Reaction Zone. Beilstein Journal of Nanotechnology. 2023 Jun;14:741–750.
  • Yang Y, Zhang H, Yan Y. Synthesis of CNTs on Stainless Steel Microfibrous Composite by CVD: Effect of Synthesis Condition on Carbon Nanotube Growth and Structure. Composites Part B: Engineering. 2019 Dec;160:369–383.
  • Yuan L, Li T, Saito K. Growth Mechanism of Carbon Nanotubes in Methane Diffusion Flames. Carbon. 2003 Apr;41:1889–1896.
  • Xu F, Liu X, Stephen DT. Synthesis of Carbon Nanotubes on Metal Alloy Substrates with Voltage Bias in Methane Inverse Diffusion Flames. Carbon. 2006 Sept;44:570–577.
  • Yuan L, Li T, Saito K. Synthesis of Multiwalled Carbon Nanotubes Using Methane/Air Diffusion Flames. Proceedings of the Combustion Institute. 2002;29:1087–1092.
  • Pan C, Bao Q. Well-Aligned Carbon Nanotubes from Ethanol Flame. Journal of Materials Science Letters. 2002 Dec;21:1927–1929.
  • Li TX, Kuwana K, Saito K, Zhang H, Chen Z. Temperature and Carbon Source Effects on Methane–Air Flame Synthesis of CNTs. Proceedings of the Combustion Institute. 2009 Oct;32:1855–1861.
  • Hamzah N, Mohd Yasin MF, Mohd Yusop MZ, Zainal MT, Fikri Rosli MA. Identification of CNT Growth Region and Optimum Time for Catalyst Oxidation: Experimental and Modelling Studies of Flame Synthesis. Evergreen. 2019 Mar;6:85–91.
  • Snelling DR, Thomson KA, Smallwood GJ, Gülder OL. Two-Dimensional Imaging of Soot Volume Fraction in Laminar Diffusion Flames. Applied Optics. 1999 Apr;38:2478–2485.
  • Calcote HF, Manos DM. Effect of Molecular Structure on Incipient Soot Formation. Combustion and Flame. 1983 June;49:289–304.
  • Saito K, Williams FA, Gordon AS. Structure of Laminar Coflow Methane–Air Diffusion Flames. Journal of Heat Transfer. 1986 Aug;108:640–648.
  • Camacho J, Choudhuri AR. Effects of Fuel Compositions on the Structure and Yield of Flame Synthesized Carbon Nanotubes. Fullerenes, Nanotubes, and Carbon Nanostructures. 2007 Mar;15:99–111.
  • Pan C, Liu Y, Cao F, Wang J, Ren Y. Synthesis and Growth Mechanism of Carbon Nanotubes and Nanofibers from Ethanol Flames. Micron. 2004 Aug;35:461–468.
  • Mikofski MA. Flame Structure and Soot Formation in Inverse Diffusion Flames, M.S. Thesis, University of California, 2005.
  • Hamzah N, Mohd Yasin MF, Mohd Yusop MZ, Saat A, Mohd Subha NA. Growth Region Characterization of Carbon Nanotubes Synthesis in Heterogeneous Flame Environment with Wire-Based Macro-Image Analysis. Diamond and Related Materials. 2019 Sept;99:107500.
  • Yellampalli S. Carbon Nanotubes: Synthesis, Characterization, Applications. InTechOpen, 2011.
  • Arana CP, Puri IK, Sen S. Catalyst Influence on the Flame Synthesis of Aligned Carbon Nanotubes and Nanofibers. Proceedings of the Combustion Institute. 2005 Mar;30:2553–2560.