[1] Mashayekhi A, Behbahani S, Nahvi A, Keshmiri M, Shakeri M. Analytical describing function of LuGre friction model. International Journal of Intelligent Robotics and Applications. 2022;6(3):437-48.
[2] Sallaberry LH, Tori R, Nunes FL. Automatic Performance Assessment in Three-dimensional Interactive Haptic Medical Simulators: A Systematic Review. ACM Computing Surveys. 2022;55(7):1-35.
[3] Mashayekhi A, Nahvi A, Yazdani M, Mohammadi Moghadam M, Arbabtafti M, Norouzi M. VirSense: A novel haptic device with fixed-base motors and a gravity compensation system. Industrial Robot: An International Journal. 2014;41(1):37-49.
[4] Hsu M-H, Chang Y-C. Haptic and Force Feedback Technology in Dental Education: A Bibliometric Analysis. International Journal of Environmental Research and Public Health. 2023;20(2):1318.
[5] Kirginas S. Exploring Players’ Perceptions of the Haptic Feedback in Haptic Digitat Games. Journal of Digital Media & Interaction. 2022;5(13):7-22.
[6] Li M, Wu Z, Zhao C-G, Yuan H, Wang T, Xie J, et al. Facial Expressions-controlled Flight Game with Haptic Feedback for Stroke Rehabilitation: A Proof-of-Concept Study. IEEE Robotics and Automation Letters. 2022;7(3):6351-8.
[7] Gallace A. Haptic Interaction in Virtual Reality: Are We Ready for the Metaverse? Neuroscientific and Behavioral Considerations. Handbook of Research on Implementing Digital Reality and Interactive Technologies to Achieve Society 50: IGI Global; 2022. p. 1-14.
[8] Wang Z, Wang S, Zuo S. A hand‐held device with 3‐DOF haptic feedback mechanism for microsurgery. The International Journal of Medical Robotics and Computer Assisted Surgery. 2019;15(5):e2025.
[9] Okada S, Okazaki Y, Kato Y, Ozawa J, Ando T, editors. Foot-Based 6-DOF Haptic Interface with Force Feedback Capability for Third Arm Manipulation. 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC); 2021: IEEE.
[10] Lacki M, Rossa C, editors. On the feasibility of multi-degree-of-freedom haptic devices using passive actuators. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2019: IEEE.
]11[ مشایخی ا، بهبهانی س، نحوی ع، کرمی ع، ارائه روش جدید ساده سازی دینامیک چند درجه آزادی ربات لامسهای و مطالعه دقت محدوده پایداری حاصله، مجله مهندسی مکانیک دانشگاه تبریز، 1401، ش 4.
[12] Dang QV, Vermeiren L, Dequidt A, Dambrine M, editors. Analyzing stability of haptic interface using linear matrix inequality approach. 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO); 2012: IEEE.
[13] Hulin T, Albu-Schäffer A, Hirzinger G. Passivity and stability boundaries for haptic systems with time delay. IEEE Transactions on Control Systems Technology. 2013;22(4):1297-309.
[14] Gil JJ, Avello A, Rubio A, Florez J. Stability analysis of a 1 dof haptic interface using the routh-hurwitz criterion. IEEE transactions on control systems technology. 2004;12(4):583-8.
[15] Gil JJ, Sánchez E, Hulin T, Preusche C, Hirzinger G. Stability boundary for haptic rendering: Influence of damping and delay. Journal of Computing and Information Science in Engineering. 2009;9(1).
[16] Hulin T, Gil JJ, Sánchez E, Preusche C, Hirzinger G, editors. Experimental stability analysis of a haptic system. Proceedings; 2006.
[17] Hulin T, Preusche C, Hirzinger G, editors. Stability boundary for haptic rendering: Influence of human operator. 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2008: IEEE.
[18] Abbott JJ, Okamura AM. Effects of position quantization and sampling rate on virtual-wall passivity. IEEE Transactions on Robotics. 2005;21(5):952-64.
[19] Diolaiti N, Niemeyer G, Barbagli F, Salisbury JK. Stability of haptic rendering: Discretization, quantization, time delay, and coulomb effects. IEEE Transactions on Robotics. 2006;22(2):256-68.
[20] Mashayekhi A, Boozarjomehry RB, Nahvi A, Meghdari A, Asgari P. Improved passivity criterion in haptic rendering: influence of Coulomb and viscous friction. Advanced Robotics. 2014;28(10):695-706.
[21] Mashayekhi A, Behbahani S, Ficuciello F, Siciliano B. Delay-dependent stability analysis in haptic rendering. Journal of Intelligent & Robotic Systems. 2020;97:33-45.
]22[ مشایخی ا، بهبهانی س، سیسلیانو ب، تابع لیاپانوف جدید برای پایداری ربات لامسه ای در شبیه سازی اجسام مجازی، مجله مهندسی مکانیک دانشگاه تربیت مدرس، 1396، 367-374.
[23] Colonnese N, Okamura AM. M-Width: Stability, noise characterization, and accuracy of rendering virtual mass. The International Journal of Robotics Research. 2015;34(6):781-98.
[24] Eom KS, Suh IH, Yi B-J, editors. A design method of a haptic interface controller considering transparency and robust stability. Proceedings 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000)(Cat No 00CH37113); 2000: IEEE.
[25] Mashayekhi A, Behbahani S, Ficuciello F, Siciliano B. Analytical stability criterion in haptic rendering: The role of damping. IEEE/ASME Transactions on Mechatronics. 2018;23(2):596-603.
]26[ شاکری م، بهبهانی س، طراحی PID تنظیم خودکار فازی برای ربات لامسهای، بیست و پنجمین همایش بین المللی مهندسی مکانیک، 1396.
]27[ شاکری م، کشمیری م، بهبهانی س، تحلیل پایداری و بهبود شفافیت عملکرد ربات لامسهای، پایان نامه کارشناسی ارشد، دانشگاه صنعتی اصفهان، 1397.
[28] Gil JJ, Ugartemendia A, Díaz I, editors. Rendering Virtual Inertia in Haptic Interfaces: Analysis and Limitations. 2022 International Conference on Robotics and Automation (ICRA); 2022: IEEE.
[29] Desai I, Gupta A, Chakraborty D, editors. Virtual mass feedback for rendering stiff virtual springs. 2019 IEEE World Haptics Conference (WHC); 2019: IEEE.
[30] Chen D, Song A, Tian L, Ouyang Q, Xiong P. Development of a multidirectional controlled small-scale spherical MR actuator for haptic applications. IEEE/ASME Transactions on Mechatronics. 2019;24(4):1597-607.
[31] Nalam V, Lee H. Development of a two-axis robotic platform for the characterization of two-dimensional ankle mechanics. IEEE/ASME Transactions on Mechatronics. 2019;24(2):459-70.