[1] Kolahi PM, Mosayebi M. Optimal Trajectory Planning for an Industrial Mobile Robot using Optimal Control Theory. 2021;10(3):25–34.
[2] رشیدی ع, کریمی ب, خداپرست ا. طراحی کنترلگر زیربهینهی توزیع شده برای آرایشبندی گروه ربات متحرک غیرهولونومیک در حضور موانع محیطی. مهندسی مکانیک دانشگاه تبریز. 2020;50(3):77–86.
[3] Korayem MH, Nazemizadeh M, Nohooji HR. Optimal point-to-point motion planning of non-holonomic mobile robots in the presence of multiple obstacles. J Brazilian Soc Mech Sci Eng. 2014;36(1):221–32.
[4] Nazemizadeh M, Rahimi HN, Amini Khoiy K. Trajectory planning of mobile robots using indirect solution of optimal control method in generalized point-to-point task. Front Mech Eng. 2012;7(1):23–8.
[5] Wu Y, Wang B, Zong GD. Finite-Time Tracking Controller Design for Nonholonomic Systems with Extended Chained Form. IEEE Trans Circuits Syst II Express Briefs. 2005;52(11):798–802.
[6] Cui M, Sun D, Liu W, Zhao M, Liao X. Adaptive tracking and obstacle avoidance control for mobile robots with unknown sliding. Int J Adv Robot Syst. 2012;9:1–14.
[7] Dos Santos RR, Steffen V, Saramago SDFP. Robot path planning in a constrained workspace by using optimal control techniques. Multibody Syst Dyn. 2008;19(1–2):159–77.
[8] Ramos OE. Optimal control for time and energy minimization in the trajectory generation of a mobile robot. Proc 2019 IEEE 26th Int Conf Electron Electr Eng Comput INTERCON 2019. 2019;1–4.
[9] Tuncer A, Yildirim M. Dynamic path planning of mobile robots with improved genetic algorithm. Comput Electr Eng [Internet]. 2012;38(6):1564–72. Available from: http://dx.doi.org/10.1016/j.compeleceng.2012.06.016
[10] Perrier C, Dauchez P, Pierrot F. A global approach for motion generation of non-holonomic mobile manipulators. Proc - IEEE Int Conf Robot Autom. 1998;4(May):2971–6.
[11] Chettibi T, Lehtihet HE, Haddad M, Hanchi S. Minimum cost trajectory planning for industrial robots. Eur J Mech A/Solids. 2004;23(4):703–15.
[12] Korayem MH, Ghariblu H, Basu A. Dynamic load-carrying capacity of mobile-base flexible joint manipulators. Int J Adv Manuf Technol. 2005;25(1–2):62–70.
[13] Korayem MH, Nazemizadeh M, Azimirad V. Optimal trajectory planning of wheeled mobile manipulators in cluttered environments using potential functions. Sci Iran [Internet]. 2011;18(5):1138–47. Available from: http://dx.doi.org/10.1016/j.scient.2011.08.026
[14] Korayem MH, Rahimi HN, Nikoobin A. Mathematical modeling and trajectory planning of mobile manipulators with flexible links and joints. Appl Math Model [Internet]. 2012;36(7):3229–44. Available from: http://dx.doi.org/10.1016/j.apm.2011.10.002
[15] Korayem MH, Nohooji HR, Nikoobin A. Path planning of mobile elastic robotic arms by indirect approach of optimal control. Int J Adv Robot Syst. 2011;8(1):10–20.
[16] Kolahi PM, Nazemizadeh M. Nonlinear dynamic modeling of tractor-trailer mobile robots with consideration of wheels inertia and their optimal point-to point path planning. Meccanica [Internet]. 2023;58(1):245–53. Available from: https://doi.org/10.1007/s11012-022-01578-6
[17] Amer NH, Zamzuri H, Hudha K, Kadir ZA. Modelling and Control Strategies in Path Tracking Control for Autonomous Ground Vehicles: A Review of State of the Art and Challenges. J Intell Robot Syst Theory Appl. 2017;86(2):225–54.
[18] Kanayama Y, Kimura Y, Miyazaki F, Noguchi T. A stable tracking control method for an autonomous mobile robot. 1990;384–9.
[19] Ishikawa T, Hamamoto K, Kogiso K. Trajectory tracking switching control system for autonomous crawler dump under varying ground condition. Autom Constr. 2023;148(January):104740.
[20] Li G, Li Z, Su CY, Xu T. Active Human-Following Control of an Exoskeleton Robot With Body Weight Support. IEEE Trans Cybern. 2023;
[21] Das T, Kar IN. Design and Implementation of an Adaptive Fuzzy Logic-Based Controller for Wheeled Mobile Robots. 2006;14(3):501–10.
[22] Klancar G, Zdesar A, Blazic S, Skrjanc I. Wheeled mobile robotics: from fundamentals towards autonomous systems. Butterworth-Heinemann; 2017.