تحلیل ارتعاشات غیرخطی پوسته‌ی استوانه‌ای ساندویچی دارای هسته‌ با ضریب پواسون منفی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی مکانیک، دانشکده مهندسی مکانیک، دانشگاه صنعتی قم، قم، ایران

2 دانشیار، دانشکده مهندسی مکانیک، دانشگاه صنعتی قم، قم، ایران

چکیده

در این پژوهش، ارتعاشات غیرخطی یک پوسته­ی استوانه ساندویچی با هسته­ای از مواد پواسون منفی (آگزتیک) مورد بررسی قرار گرفته است. پوسته مورد نظر از رویه­هایی با ماده همسانگرد و هسته­ای از مواد با ضریب پواسون منفی تشکیل شده که این خاصیت نتیجه ساختار هسته می باشد. ابتدا به کمک معادلات ساختاری مواد پواسون منفی و مواد همسانگرد و استفاده از فرضیات لایه معادل، سفتی کششی، خمشی و کوپلینگ سازه محاسبه می­شود. سپس با توجه به شرایط مرزی و کامل بودن پوسته در جهت محیطی، میدان جابه­جایی حدس زده می­شود. با جایگذاری میدان جابه­جایی در معادلات حرکت با مشتقات جزئی، معادلات به شکل معادلات غیرخطی با مشتقات معمولی تبدیل می­شود. در ادامه برای حل این معادلات از روش عددی رانگ-کوتا بهره گرفته می­شود. سپس به قصد صحه سنجی نتایج با نتایج موجود در ادبیات تحقیق مقایسه و در انتها اثر مشخصات هندسی هسته با ساختارپواسون منفی همانند زاویه، طول و ضخامت المان­ها و مشخصات هندسی پوسته­ی استوانه­ای همانند شعاع و طول استوانه بر مشخصات فرکانسی سازه مورد بررسی قرار می­گیرد.

کلیدواژه‌ها

موضوعات


[[1]]  Lakes. R, Foam structures with a negative Poisson’s ratio. Science. 1987; 1038–1041.
[[1]] Donoghue, J. P., K. L. Alderson, and K. E. Evans. The fracture toughness of composite laminates with a negative Poisson's ratio. physica status solidi (b). 2009; 246.9: 2011-2017.
[[1]] Eipakchi, H., & Nasrekani, F. M. Vibrational behavior of composite cylindrical shells with auxetic honeycombs core layer subjected to a moving pressure. Composite Structures. 2020; 254: 112847.‏
[[1]] Sarvestani, H. Y., Akbarzadeh, A. H., Niknam, H., & Hermenean, K. 3D printed architected polymeric sandwich panels: Energy absorption and structural performance. Composite Structures. 2018; 200, 886-909
[[1]] Ruan, H., Ning, J., Wang, X., & Li, D. Novel tubular structures with negative Poisson's ratio and high stiffness. physica status solidi (b). 2021; 258(4): 2000503.‏
[[1]] Bich, D. H., & Nguyen, N. X. Nonlinear vibration of functionally graded circular cylindrical shells based on improved Donnell equations. Journal of Sound and Vibration. 2012; 331(25): 5488-5501.
[[1]] Yang, S. W., Zhang, W., Hao, Y. X., & Niu, Y. Nonlinear vibrations of FGM truncated conical shell under aerodynamics and in-plane force along meridian near internal resonances. Thin-Walled Structures. 2019; 142, 369-391
[[1]]  نکوئی م، محمدی م، راغبی م، تحلیل کمانش پوسته های استوانه­ای کامپوزیتی هیبریدی تقویت شده با الیاف حافظه­دار در محیط گرمایی.  مجلۀ مهندسی مکانیک دانشگاه تبریز، 1400.
[[1]] Zhang, J., Zhu, X., Yang, X., & Zhang, W. Transient nonlinear responses of an auxetic honeycomb sandwich plate under impact loads. International Journal of Impact Engineering. 2019; 134:103383.
[[1]] Gao, Q., Zhao, X., Wang, C., Wang, L., & Ma, Z. Crashworthiness analysis of a cylindrical auxetic structure under axial impact loading. Science China Technological Sciences. 2020
[[1]] Gao, Q., Liao, W. H., & Huang, C. Theoretical predictions of dynamic responses of cylindrical sandwich filled with auxetic structures under impact loading. Aerospace Science and Technology. 2020; 107: 106270.
[[1]] Quoc, T. H., Tu, T. M., & Van Tham, V. Free vibration and dynamic response of sandwich composite plates with auxetic honeycomb core. Journal of Science and Technology in Civil Engineering. 2021; 15(4), 1-14.‏
[[1]] Guo, Y., Zhang, J., Chen, L., Du, B., Liu, H., Chen, L., ... & Liu, Y. Deformation behaviors and energy absorption of auxetic lattice cylindrical structures under axial crushing load. Aerospace Science and Technology. 2020; 98:105662.
[[1]] Eipakchi, H., & Nasrekani, F. M. Vibrational behavior of composite cylindrical shells with auxetic honeycombs core layer subjected to a moving pressure. Composite Structures. 2020; 254: 112847.
[[1]] Alinia, M., Nopour, R., Aghdam, M.M., & Hedayati, R. The effect of auxeticity on the vibration of conical sandwich shells with ring support under various boundary conditions. Engineering Analysis with Boundary Elements. 2023; 152: 130-147.
[[1]] Ashby. M. F, Gibson. L. J, Cellular solids: structure and properties, Press Synd. Univ. Cambridge, Cambridge, UK. 1997; 175–231.
[[1]] Li, B., & Fu, T.  Analysis of vibration characteristics of auxetic sandwich cylindrical shells resting on elastic foundation. Journal of Sandwich Structures & Materials. 2023; 24(5): 1865-1882.‏
[[1]] Zhu, Xiufang, et al. Vibration frequencies and energies of an auxetic honeycomb sandwich plate. Mechanics of Advanced Materials and Structures. 2019; 26.23:1951-1957.
[[1]] Qing, Tian D., and Chun Y. Zhi. Wave propagation in sandwich panel with auxetic core. 2010; 393-402.
[[1]] Brush, D. O., Almroth, B. O., & Hutchinson, J. W. Buckling of bars, plates, and shells.‏ 1975.
[[1]] Pradhan, S. C., Loy, C. T., Lam, K. Y., & Reddy, J. N. Vibration characteristics of functionally graded cylindrical shells under various boundary conditions. Applied Acoustics. 2000; 61(1): 111-129
[[1]] Loy, C. T., Lam, K. Y., & Reddy, J. N. Vibration of functionally graded cylindrical shells. International Journal of Mechanical Sciences. 1999; 41(3): 309-324.‏
[[1]]  Volʹmir, A. S. The nonlinear dynamics of plates and shells. Foreign Technology Div Wright-Patterson Afb Oh.‏ 1974.